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Abstract. This paper was motivated by a practical optimization problem for-

mulated at the Erdenet Mining Corporation (Mongolia). By solving an iden-
tification problem for a chosen design of experiment we developed a quadratic

model that quite adequately represents the experimental data. The problem
obtained turned out to be the indefinite quadratic program, which we solved

by applying the global search theory for a d.c. programming developed by

A.S. Strekalovsky [13]–[15]. According to this d.c. optimization theory, we
performed a local search that takes into account the structure of the problem

in question, and constructed procedures of escaping critical points provided by

the local search. The algorithms proposed for d.c. programming were verified
using a set of test problems as well as a copper content maximization problem

arising at the mining factory.

1. Introduction. We consider optimization problems that arise at the ore mining
corporation of Mongolia and can be formulated as a quadratic programming with
d.c. reduction form. The criteria or objective functions in these problems are the
copper content and the copper recovery in a rougher concentrate.

Quadratic programming frequently arises in optimization of technological pro-
cesses and design of experiments. It is assumed that the experimenter is concerned
with a technological process involving some response f which depends on the input
variables x1, x2, . . . , xn from a given experimental region. The standard assump-
tions on f are that f is a twice differentiable function on the experimental region
and the independent variables x1, x2, . . . , xn are controlled in the experimental
process and measured with a negligible error. The feasible region of variables can
be a nonconvex set but in most cases, for simplicity, the experimenter usually re-
stricts himself to the box type of regions. As a rule, the researcher has the following

2010 Mathematics Subject Classification. Primary: 90C26, 90C90; Secondary: 90C20.
Key words and phrases. Identification and modeling, nonconvex optimization, indefinite qua-

dratic programming, difference of two convex functions, local and global searches.
This work has been supported by the Russian Science Foundation, Project N 15-11-20015.
∗ Corresponding author: renkhbat46@yahoo.com.

613

http://dx.doi.org/10.3934/jimo.2017063


614 R. ENKHBAT, T. V. GRUZDEVA AND M. V. BARKOVA

second-order regression or a quadratic model expressed by a quadratic function that
adequately represents the experimental data:

f(x) =

n∑
i=1

n∑
j=1

aijxixj +

n∑
j=1

bjxj + c,

where coefficients aij , bj , c, i, j = 1, . . . , n, are assumed to be found by solving
an identification problem for a chosen design of the experiment, for example, the
orthogonal central composite design [8]. It is required to find the global extremum of
the function f(·) over an experimental region or to equivalently reduce the problem
to the indefinite quadratic programming over a box constraint [1, 2].

As well known [4, 7, 14], any quadratic program can be formulated as a problem
of the d.c. maximization [12]–[15]:

f(x) = h(x)− g(x) ↑ max, x ∈ Π, (P )

where g(·), h(·) are convex functions, and the set Π ∈ IRn is also convex. From
now on, let us suppose that the following assumption on the function f(·) over IRn

is satisfied:

sup(f, IRn) <∞. (H)

It is known [7, 12, 13, 14] that the A.D. Alexandov’s functions (or the (d.c.)
functions that can be represented in a form of the difference of two convex func-
tions), form a linear space, which is dense in the space of continuous functions
(in the topology of homogeneous convergence on the compacts). Thus, problems
of the d.c. programming represent a rather large and, besides, very attractive
class of optimization problems, for which A.S. Strekalovsky developed the the-
ory of the global search [12]–[15]. According to the theory based on the global
optimality conditions, the process of finding a global solution in nonconvex opti-
mization problems (see [3, 14, 16, 17]) consists of the two principal stages: (i) a
special local search, which takes into account the structure of the problem under
scrutiny, and (ii) the procedures of escaping from critical points (provided by the lo-
cal search) based on the global optimality conditions [13, 14]. There are many works
[5, 6, 7, 10, 11, 18, 19, 20] devoted to theory and algorithms for d.c. optimization.

The paper is organized as follows. In section 2, we formulate the identification
problem, construct the function f(·) and examine its properties. In section 3, we
recall the theoretical basis for solving the d.c. maximization problems and the global
search strategy. In the final section, we address applied optimization problems
that arise in ore-processing and demonstrate numerical results obtained by the
algorithms proposed.

2. Identification problem and model formulations. In general case, the coef-
ficients of the quadratic model can be estimated by the least-squares method based
on the following experimental observation data:

x1 x2 . . . xn f1 f2 . . . f l

x11 x12 . . . x1n f11 f12 . . . f1l

x21 x22 . . . x2n f21 f22 . . . f2l

. . . . . . . . . . . . . . . . . . . . . . . .
xm1 xm2 . . . xmn fm1 fm2 . . . fml
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where m is a number of observations, l is a number of function’s observations.
Then, according to the least-squares method, in order to find the coefficients

A = {aij}, bj , i, j = 1, . . . n, and c, we need to solve the following unconstrained
minimization problem:

Fl(A, b, c) =

m∑
t=1

 n∑
i=1

n∑
j=1

aijxtixtj +

n∑
j=1

bjxtj + c− ftl

2

↓ min
A,b,c

(1)

Further, for simplicity, we omit the index l and write down the function Fl(A, b, c)
as follows

F (A, b, c) =
m∑
t=1

(
〈Axt, xt〉2 + 〈b, xt〉2 + c2 + (ft)

2 + 2〈Axt, xt〉〈b, xt〉 +

+2c〈Axt, xt〉 − 2ft〈Axt, xt〉+ 2c〈b, xt〉 − 2ft〈b, xt〉 − 2ftc ) =

=
n∑

i=1

n∑
j=1

n∑
q=1

n∑
p=1

αijqpaijaqp +
n∑

i=1

n∑
j=1

n∑
q=1

βijqaijbq +
n∑

i=1

n∑
j=1

γijbibj+

+2
n∑

i=1

n∑
j=1

γijaijc+
n∑

i=1

νibic− 2
n∑

i=1

n∑
j=1

γijaij −
n∑

i=1

νibi + χc2 + ωc+ ρ,

where

αijlm =
m∑
t=1

xtix
t
jx

t
lx

t
m, βijl = 2

m∑
t=1

xtix
t
jx

t
l , γij =

m∑
t=1

xtix
t
j , νi = 2

m∑
t=1

xti,

χ = m, ω = −2
m∑
t=1

ft, ρ =
m∑
t=1

(ft)
2.

Lemma 2.1. The function F (A, b, c) is convex with respect to the variables aij , bi,
i, j = 1, . . . , n, and c.

Proof. Set φt = (〈Axt, xt〉+ 〈b, xt〉+ c− ft)
2
. Then, it is clear that

F (A, b, c) =
m∑
t=1

φt.

Now let us show that the functions φt, t = 1, . . . ,m, are convex. Further, we
omit the index t and denote by y and u the following vectors:

y = (a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann)T ∈ IRn×n,
u = (x1x1, x1x2, . . . , xnx1, . . . , xnxn)T ∈ IRn×n,

so that y(i−1)n+j = aij , u(i−1)n+j = xixj , i, j = 1, . . . , n. Hence, the function φ is

presented as φ(y, b, c) = (〈u, y〉+ 〈b, x〉+ c− f)
2
.

Compute the Hessian of the function φ(·):

∂2φ

∂y
= 2uTu ≥ 0,

∂2φ

∂b
= 2xTx ≥ 0,

∂2φ

∂c
= 0. (2)

Therefore, the Hessian has the form 2uTu 0n×n 0n×1

0n×n 2xTx 0n×1

01×n 01×n 0

 ,

which is obviously a positive semidefinite matrix due to (2).
It means that φt is convex for all t = 1, . . . ,m, and, consequently, the function

F (A, b, c) is convex. The lemma is proved.
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Therefore, problem (1) can be solved by the suitable classical convex optimization
methods [9] and respective software packages (FICO Xpress, IBM CPLEX, etc.).

In our case as industrial application, we consider the process of collective flotation
of copper and molybdenium minerals at the Erdenet Mining Corporation (Mongo-
lia). That is why it is important to maximize the copper content and the copper
recovery in the rougher concentrate subject to technological constraints.

To find the parameters aij , bi, i, j = 1, . . . , n, and c, we processed m = 5000 of
the real industrial data, solved two (for l = 1 and l = 2) identification problems (1)
with n = 7 employing the software package IBM CPLEX, and constructed two
functions f1, f2 : IR7 → IR.

The function f1(·) approximates the copper content in the rougher concentrate
(measured in % of mass); meanwhile, the function f2(·) represents the copper re-
covery in the rougher concentrate (in % of mass). These functions depend on the
following variables:

x1 – consumption of collector agent AeroMix, in grams per ton;
x2 – consumption of collector agent VK-901, in grams per ton;
x3 – consumption of foaming agent MIBK, in grams per ton;
x4 – content of -74 micrometer grain class in the hydrocyclone overflow, in % of
mass;
x5 – total content of copper in the ore prior to treatment, in % of mass;
x6 – total content of primary copper in the ore prior to treatment, in % of mass;
x7 – total content of oxidized copper in the ore prior to treatment, in % of mass.

The technological requirements for the variables are given by the box constraints:

4.90 ≤ x1 ≤ 12.00
0 ≤ x2 ≤ 6.14

10.70 ≤ x3 ≤ 18.70
48.90 ≤ x4 ≤ 67.55
0.43 ≤ x5 ≤ 0.68

35.38 ≤ x6 ≤ 84.30
1.33 ≤ x7 ≤ 7.97

(3)

Further, the parameters for the function f1(x) = 〈A1x, x〉 + 〈b1, x〉 + c1 are as
follows

A1 =



0.129 0.046 −0.081 −0.061 0.109 0.893 0.128
0.000 −0.061 0.134 0.317 −0.073 0.018 0.045
−0.081 0.000 0.324 0.301 0.038 −4.877 −0.097

0.622 0.317 −0.739 −0.569 1.148 2.851 0.085
0.109 −0.073 0.038 0.000 0.451 0.243 0.469
−0.629 0.018 4.797 −1.790 0.243 0.202 −0.741

0.128 0.045 −0.097 0.085 0.000 0.815 0.036


b1 = (−1.063;−0.654;−0.018;−0.852;−2.305;−1.763;−0.628), c1 = 3.351.

It can be readily seen that the matrix A1 is asymmetrical with the eigenvalues
λ1

1,2 = 0.27 ± 5.46i, λ1
3 = −0.63, λ1

4 = 0.59, λ1
5 = −0.01, λ1

6,7 = 0.02 ± 0.11i,
therefore A1 is an indefinite matrix.

In addition, the parameters for the function f2(x) = 〈A2x, x〉 + 〈b2, x〉 + c2 are
as follows
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A2 =



−0.033 0.002 0.054 −1.901 −0.189 −1.012 0.020
0.000 −0.037 0.067 −0.075 −0.061 0.019 −0.058
0.054 0.000 −0.384 2.154 0.316 0.244 0.012
1.270 −0.075 −1.700 −0.134 −0.196 0.084 0.067
−0.189 −0.061 0.316 0.000 0.074 −0.109 0.023

0.862 0.019 −0.203 −0.171 −0.109 0.168 −2.244
0.020 −0.058 0.012 0.067 0.000 2.081 0.024


b2 = (0.917; 0.235;−0.374; 0.617; 0.100; 0.149;−0.118), c2 = 0.317.

Besides, the matrix A2 is also asymmetrical with the eigenvalues λ2
1,2 = −0.09±

2.73i, λ2
3,4 = −0.03 ± 2.00i, λ2

5 = −0.13, λ2
6 = −0.05, λ2

7 = 0.09. Therefore, A2 is
an indefinite matrix.

Since the matrices A1 and A2 have both positive and negative eigenvalues, the
corresponding problems (l = 1, 2)

f l(x) = 〈Alx, x〉+ 〈bl, x〉+ cl ↑ max, x ∈ Π (Pl)

turn out to be the nonconvex optimization problems, where

Π = {x ∈ IR7 : 0.41 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0.57 ≤ x3 ≤ 1, 0.72 ≤ x4 ≤ 1,
0.63 ≤ x5 ≤ 1, 0.42 ≤ x6 ≤ 1, 0.17 ≤ x7 ≤ 1} (4)

The box constraint (4) is the normalized form of the technological requirements for
the variables (3).

Below we will show how Problems (P1) and (P2) can be represented as the d.c.
programs and solved by an algorithm based on the global search theory [12]–[15].

3. D.C. representation. In order to solve Problems (Pl), we need an explicit
d.c. representation of the nonconvex functions f l(·) = hl(x) − gl(x), l = 1, 2. For
the sake of simplicity, we omit the index l and describe a simple method [14] of
constructing functions h(x) and g(x).

It is well known that any quadratic matrix may be transformed into a symmetrical
matrix Q which, in turn, can be represented as the difference of two symmetric
positive definite matrices Q = Q1−Q2. This allows us to get the d.c. representation
of the quadratic function f(·)

f(x) = 〈Q1x, x〉 − 〈Q2x, x〉
4
= h(x)− g(x), (5)

where h(·) and g(·) are strongly convex functions (Q1, Q2 > 0 are positive definite).
For example, it can be done in the following way [14].

First, we represent the matrix Q via the difference of two matrices with non-
negative components: Q = D1 −D2, where

d
(1)
ij =

{
qij , if qij ≥ 0,
0, if qij < 0,

d
(2)
ij =

{
0, if qij ≥ 0,
−qij , if qij < 0.

Second, we construct the matrices Γ1 = D1 + Λ1, Γ2 = D2 + Λ1, where Λ1 is a
diagonal matrix:

λ
(1)
ii =

{
0, if d

(1)
ii > Si,

Si − d(1)
ii + ε, if d

(1)
ii ≤ Si,

where Si =
∑
i 6=j

d
(1)
ij is the sum of nondiagonal elements of the row i in the matrix

D1, and the number ε > 0. Thus, Γ1 is a positive definite matrix.
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Similarly, we obtain Q1 = Γ1 +Λ2, Q2 = Γ2 +Λ2, where Λ2 is a diagonal matrix:

λ
(2)
ii =

{
0, if γ

(2)
ii > Ti,

Ti − γ(2)
ii + ε, if γ

(2)
ii ≤ Ti,

with Ti =
∑
i 6=j

γ
(2)
ij , the sum of nondiagonal elements of the row i in the matrix Γ2.

Hence, the matrix Q is represented as the difference Q = Q1 − Q2 of matrices
Q1 and Q2 with non-negative components and dominant diagonals, and we received
the d.c. representation (5).

In what follows, according to the global search theory we should focus on finding
a local maximizer to the Problem (P ).

4. Local search. In order to find a local solution to the Problem (P ), we apply the
well-known DC-Algorithm [12, 13, 14, 18]. As known, it consists of linearizing, at
a current point, the function h(·) which defines the basic non-convexity of Problem
(P ), and minimizing the convex approximation of the goal function f(·) obtained
by replacing the non-convex part with its linearization. It is easy to see that the
algorithm constructed in this way provides critical points by employing only tools
of the convex analysis.

Therefore, we start with an initial point x0 ∈ IRn. Suppose a point xs ∈ Π is
provided. Then, we find xs+1 ∈ Π as an approximate solution to the linearized
problem

Φs(x) = g(x)− 〈∇h(xs), x〉 ↓ min
x
, x ∈ Π, (PLs)

It means that the next iteration xs+1 satisfies the following inequality

g(xs+1)− 〈∇h(xs), xs+1〉 ≤ inf
x∈Π
{g(x)− 〈∇h(xs), x〉}+ δs, (6)

where the sequence {δs} fulfils the following conditions

δs ≥ 0, s = 0, 1, 2, . . . ;

∞∑
s=0

δs <∞.

Note that the linearized Problem (PLs) turned out to be convex, meanwhile
Problem (P ) was a nonconvex one.

As it was suggested in [12, 13, 14], one of the following inequalities can be em-
ployed as a stopping criterion for the local search method:

f(xs)− f(xs+1) ≤ τ

2
,

Φs(x
s)− Φs(x

s+1)
4
= g(xs)− g(xs+1) + 〈∇h(xs), xs+1 − xs〉 ≤ τ

2
,

 (7)

where τ is a given accuracy.
If one of the inequalities (7) is fulfilled, it can be easily shown that the point xs

turns out to be a critical point to Problem (P ) with the accuracy τ and under the

condition δs ≤
τ

2
. Indeed, (7) together with the inequality (6) imply that

g(xs)− 〈∇h(xs), xs〉 ≤ τ

2
+ g(xs+1)− 〈∇h(xs), xs+1〉 ≤

≤ inf
x∈Π
{g(x)− 〈∇h(xs), x〉}+

τ

2
+ δs.

Therefore, if δs ≤
τ

2
, the point xs is a τ -solution to Problem (PLs).
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In the next section we show how to escape from critical points provided by the
local search method.

5. Optimality conditions and the global search strategy. Let us recall the
fundamental result of the Global Search Theory.

Theorem 5.1. [13, 14, 15] Suppose that ∃v ∈ Π : f(v) < f(z) = ζ.
Then, a point z ∈ Π is a global solution to Problem (P ) if and only if

∀(y, β) ∈ IRn × IR : h(y) = β + ζ,
g(y)− β ≥ 〈∇h(y), x− y〉 ∀x ∈ Π.

}
(E)

As we can see, the verifying condition (E) for a given y requires solving the
convex program (PL(y)):

g(x)− 〈∇h(y), x〉 ↓ min, x ∈ Π, (8)

depending on ‘perturbation’ parameters (y, β) satisfying h(y) = β + ζ.
According to Theorem 5.1, in order to conclude whether a given point z ∈ Π

is a global solution to Problem (P ) or not, we need to solve a family of linearized
problems (8) by one of the well known convex optimization methods [9].

On the other hand, we can see that if the condition (E) is violated at a given

tuple (ỹ, β̃, u), u ∈ Π

g(u)− β̃ < 〈∇h(ỹ), u− ỹ〉,
due to convexity of h(·), then we get g(u) < β̃ + h(u) − h(ỹ) and conclude that
z ∈ Π is not optimal.

Moreover, on each level ζk = f(zk), it is not necessary to investigate all pairs of
(y, β) satisfying (E), ζk = h(y) − β, but it is sufficient to discover the violation of

the variational inequality (E) only for one pair (ỹ, β̃) and u ∈ Π.
The properties of the Optimality Conditions (E) allow one to construct an al-

gorithm for solving the d.c. maximization problems. The algorithm comprises two
principal stages:

a) the local search, which provides for an approximately critical point zk with
the value corresponding to the goal function ζk = f(zk);

b) procedures of escaping from critical points, which are based on the Optimality
Conditions (E).

Global Search Scheme.

Step 1. By using the local search method find a critical point zk in Problem (P ).
Step 2. Choose a number β : inf(g,Π) ≤ β ≤ sup(g,Π).

Choose an initial β0 = g(zk), ζk = f(zk) = h(zk)− g(zk).
Step 3. Construct a finite approximation

Rk(β) = {v1, . . . , vNk | h(vi) = β + ζk, i = 1, . . . , Nk, Nk = Nk(β)}

of the level surface {h(x) = β + ζk} of the function h(·).
Step 4. Find a δk-solution ūi of the following Linearized Problem:

g(x)− 〈∇h(vi), x〉 ↓ min
x
, x ∈ Π, (PLi)

so that g(ūi)− 〈∇h(vi), ūi〉 − δk ≤ infx{g(x)− 〈∇h(vi), x〉}.
Step 5. Starting from the point ūi, find a local maximizer ui by the local search

method.
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Step 6. Find a δk-solution wi (h(wi) = β − ζk) of the level problem, i.e.

〈∇h(wi), ui − wi〉+ δk ≥ sup
v
{〈∇h(v), ui − v〉| h(v) = β + ζk, }.

Step 7. Compute the value ηk(β) := η0
k(β) + β, where

η0
k(β) := 〈∇h(wj), uj − wj〉 − g(uj) = max

i∈Ik
{〈∇h(wi), ui − wi〉 − g(ui)},

i ∈ Ik = {i ∈ {1, . . . , Nk}| g(vi) ≤ β}.
Step 8. If ηk(β) > 0 go to Step 1 with uj , a new starting point for the local search.
Step 9. Otherwise, choose a new value of β and go to Step 3.

6. Approximation of a level surface. One of the principal features of the Global
Search Algorithm is an approximation of the level surface of the convex function
h(·) which generates the basic nonconvexity in Problem (P ) (Step 3). In particular,
an approximation Rk(β) of the level surface h(x) = β + ζ for each pair (β, ζk),
ζk = f(zk) can be constructed by the following rule

vi = µie
i, i = 1, . . . , n (9)

where ei is the unit vector from the Euclidean basis of IRn.
The search of µi turns out to be rather simple and, moreover, analytical (i.e.

it reduces itself to the solution of a quadratic equation of one variable) for the
quadratic function. When h(x) = 〈Q1x, x〉 the number µi for each i = 1, . . . , n, is
computed by the following formula

µi = ±

√
β + ζk
h(ei)

.

The set (approximation) (9) has proven to be rather competitive [14, 16, 17] during
the computational simulations.

7. Computational experiments. The Problems (Pl), l = 1, 2, have been solved
by the proposed algorithm based on the global search scheme in Subsection 5. All
computational experiments have been performed on the computer with CPU Intel
Core i5, 2x2.20 GHz, 6 GB RAM.

7.1. Testing the local search method. The local search method (LSM) from
Subsection 4 has been tested using various starting points.

At each iteration of the LSM, a convex Problem (PLs) has been solved by the
software package IBM CPLEX. The accuracy of the LSM was τ = 10−4.

Tables 1 and 2 represent the results of the computational testing of the LSM and
employ the following denotations:
# is the number of starting point;
x0 is the starting point;
fl(x

0) is the value of the goal function to Problem (Pl) at the starting point, l = 1, 2;
fl(z) is the value of the function at the critical point provided by the LSM, l = 1, 2;
PL is the number of Linearized Problems solved (iterations of the LSM);
Time is the CPU time of computing solutions (seconds).
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Table 1. Local search method for Problem (P1).
# x0 f1(x0) f1(z) PL Time
1 (0.408, 1.000, 0.572, 1.000, 0.628, 1.000, 0.167) 0.91617 0.93224 6 0.062
2 (0.408, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000) 1.10581 1.28877 6 0.076
3 (1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 1.000) 1.20652 1.35330 5 0.047
4 (0.987, 0.920, 0.852, 0.914, 0.893, 0.796, 0.186) 0.87444 1.36455 7 0.015
5 (0.658, 0.699, 0.970, 0.783, 0.629, 0.858, 0.847) 0.83431 1.36510 10 0.010

Table 2. Local search method for Problem (P2).
# x0 f2(x0) f2(z) PL Time

1 (1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000) 0.87224 1.10128 9 0.090
2 (0.408, 1.000, 0.572, 1.000, 0.628, 1.000, 0.167) 1.02257 1.04541 5 0.047
3 (0.408, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000) 1.08494 1.10126 8 0.078
4 (0.408, 0.000, 0.572, 0.724, 0.628, 1.000, 0.167) 0.93835 1.10021 16 0.031
5 (1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.167) 0.99559 1.09847 8 0.012

The experimental results showed that beginning with the various starting points,
the LSM delivered quite a varying set of local solutions to Problems (P1) and (P2).
At the same time, there exist the values f1(z5) = 1.365 and f2(z1) = f2(z3) = 1.1013
(bold font in the tables) that might be the best known solution to the Problems
(P1) and (P2), respectively.

7.2. Testing the global search method. On the basis of the Global Search
Scheme from Subsection 5, we developed a global search algorithm (GSA) for search-
ing a global solution to the Problems (P1) and (P2).

Further, starting from the same points (see Tables 1 and 2), the GSA has found
the best known solution to Problems (P1) and (P2). The results of computational
simulations are presented in Tables 3 and 4. In addition to the denotations employed
in Tables 1 and 2, we denoted by f∗l ( l = 1, 2) the value of the function at the point
provided by the GSA; loc denotes a number of the LSA runs during the GSA; it
stands for a number of the GSA iterations.

Table 3. Global search method for Problem (P1).
# f1(x0) f∗1 it loc PL Time

1 0.91617 1.36518 8 161 346 0.260
2 1.10581 1.36518 9 157 338 0.250
3 1.20652 1.36518 9 165 353 0.262
4 0.87444 1.36518 5 147 319 0.234
5 0.83431 1.36518 1 136 294 0.218

Table 4. Global search method for Problem (P2).
# f2(x0) f∗2 it loc PL Time

1 0.87224 1.10128 1 74 145 0.124
2 1.02257 1.10128 8 91 199 0.171
3 1.08494 1.10128 1 74 155 0.124
4 0.93835 1.10128 6 85 188 0.141
5 0.99559 1.10128 8 91 199 0.156

Thus, the global search algorithm provided us with the global (best-known) so-
lutions to Problems (P l), l = 1, 2, in a normalized form:

x̄1
∗ = (1, 0.675893, 0.572193, 1, 1, 1, 1), f1(x̄1

∗) = 1.365181;

x̄2
∗ = (0.408333, 0.672595, 1, 1, 1, 1, 0.166876), f2(x̄2

∗) = 1.101275.
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The corresponding global solutions in the original variables are

x1
∗ = (12, 4.149986, 10.7, 67.55, 0.68, 84.3, 7.97), f1(x1

∗) = 23.504320;

x2
∗ = (4.9, 4.129735, 18.7, 67.55, 0.68, 84.3, 1.33), f2(x2

∗) = 97.485929,

which meet the technological requirements claimed by the management of the Er-
denet Mining Corporation.

8. Conclusions. We considered the real life problem of maximizing the copper
content in the concentrate which arises at the Erdenet Mining Corporation (Mon-
golia). This problem has been originally formulated as an indefinite quadratic pro-
gramming over a box constraint [1, 2] of technological variables. In general, it is
known that such problems are NP-hard. Further, we reduced this problem to a
d.c. programming problem, so that we could apply the global optimality conditions
developed by A.S. Strekalovsky [12]–[15] and a corresponding algorithm proposed
in [13]–[17]. The global (best-known) solution provided by the algorithm meets the
technological requirements given by the Erdenet Mining Corporation.
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