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Abstract. We generalize Malfatti’s problem which dates back to 200 years ago

as a global optimization problem in a high dimensional space. The problem

has been formulated as the convex maximization problem over a nonconvex
set. Global optimality condition by Strekalovsky[11] has been applied to this

problem. For solving numerically Malfatti’s problem, we propose the algorithm
in [3] which converges globally. Some computational results are provided.

1. Introduction. In 1803 Italian mathematician Malfatti posed the following prob-
lem: how to pack three non-overlapping circles of maximum total area in a given
triangle?

Malfatti originally assumed that the solution to this problem are three circles
inscribed in a triangle such that each circle tangent to other two and touches two
sides of the triangle.

Now it is well known that Malfatti’s solution is not optimal.There are works de-
voted to solving Malfatti’s problem [13]-[6], [5]-[8].The most common methods used
for finding the best solutions to Malfatti’s problem were algebraic and geometric
approaches. In 1994 Zalgaller and Los [14],[6] showed that the greedy arrangement
is the best one. Based on trigonometric equations and inequalities, using so called
rigid systems they did attempt to find the best solution to Malfatti’s problem. Most
recently, a new approach based on global optimality conditions by Strekalovsky [11]
for solving Malfatti’s problem was proposed in [2]. The paper is organized as fol-
lows. In section 2, we formulate Malfatti’s problem as the convex maximization
problem. Global optimality conditions for Malfatti’s problem in a high dimensional
space are given in Section 3. In section 4 computational results are provided.
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2. Malfatti’s Problem and Convex Maximization. In order to generalize Mal-
fatti’s problem as an optimization problem for high dimensional case, we need to
do the following steps.

First, we equivalently formulate the problem in terms of convex sets such as a
ball and a polyhedral set. Secondly, we characterize inscribed conditions which
mean that the balls lie inside a polyhedral set. For this purpose, we introduce the
following sets. Denote by B(x, z) a ball with a center x ∈ Rn and a radius z ∈ R :

B(x, z) = {y ∈ Rn|‖y − x‖ ≤ z}. (1)

A bounded and closed polyhedral set D ⊂ Rn is given by

D = {x ∈ Rn|〈ai, x〉 ≤ bi, ai ∈ Rn, bi ∈ R, i = 1, 2, . . . ,m}, (2)

here 〈, 〉 denotes the scalar product of two vectors in Rn, ‖ · ‖ is Euclidean norm,
and int D 6= ∅.

Theorem 2.1. B(x, z) ⊂ D if and only if

〈ai, x〉+ z‖ai‖ ≤ bi, i = 1, 2, . . . ,m. (3)

Proof.
Necessity. Let y ∈ B(x, z) and y ∈ D. A point y ∈ B(x, z) can be easily present-
ed as y = x + zh, h ∈ Rn, ‖h‖ ≤ 1. Condition y ∈ D follows that 〈ai, y〉 ≤ bi, i =
1, 2, . . . ,m or equivalently, 〈ai, x〉+ z〈ai, h〉 ≤ bi, i = 1, 2, . . . ,m, ∀h ∈ Rn. Hence,
we have
〈ai, x〉+ z max

‖h‖≤1
〈ai, h〉 ≤ bi, i = 1, 2, . . . ,m,

or
〈ai, x〉+ z〈ai, ai

‖ai‖ 〉 ≤ bi, i = 1, 2, . . . ,m,

which yield
〈ai, x〉+ z‖ai‖ ≤ bi, i = 1, 2, . . . ,m.

Sufficiency. Let condition (3) be held and on the contrary, assume that there

exists ỹ ∈ B(x, z) such that ỹ 6∈ D. Clearly, there exists h̃ ∈ Rn so that ỹ =

x + zh̃, ‖h̃‖ ≤ 1. Since ỹ 6∈ D, there exists j ∈ {1, 2, . . . ,m} for which 〈aj , ỹ〉 > bj
or 〈aj , x+ zh̃〉 = 〈aj , x〉+ z〈aj , h̃〉 > bj .
On the other hand, using Cauchy-Schwarz-Bunyakovsky inequality we have 〈aj , x〉+
z‖aj‖ > bj which contradicts (3).

Now we formulate inscribed conditions of three balls into a polyhedral set. There
are 3 main cases:
Case 1. Three balls are mutually tangent to each other.
Case 2. One of the balls is tangent to other two and the centers of the balls lie on
the same line.
Case 3. One of the balls is tangent to other two but their centers don’t lie on the
same line. At the same time, the last two balls don’t intersect with each other.

Denote by u(x1, x2, . . . , xn), v(xn+1, . . . , x2n) and p(x2n+1, . . . , x3n) centers of
three balls inscribed in a polyhedral set D given by (2). Let x3n+1,x3n+2 and x3n+3

be their corresponding radii.
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Now we are ready to formulate Malfatti’s generalized problem for Case 1.

max f(x) =
πn/2

Γ(n
2 + 1)

(xn3n+1 + xn3n+2 + xn3n+3), (4)

〈ai, u〉+ x3n+1‖ai‖ ≤ bi, i = 1, 2, . . . ,m, (5)

〈ai, v〉+ x3n+2‖ai‖ ≤ bi, i = 1, 2, . . . ,m, (6)

〈ai, p〉+ x3n+3‖ai‖ ≤ bi, i = 1, 2, . . . ,m, (7)

‖u− v‖2 = (x3n+1 + x3n+2)2, (8)

‖u− p‖2 = (x3n+1 + x3n+3)2, (9)

‖p− v‖2 = (x3n+2 + x3n+3)2, (10)

x3n+1 ≥ 0, x3n+2 ≥ 0, x3n+3 ≥ 0, (11)

where Γ(x) is the gamma-function.
The function f in (4) denotes a total volume of the three balls. Conditions

(5)− (7) characterize inscribed conditions of three balls into a polyhedral set while
conditions (8) − (11) correspond to Case 1. We can easily see that the conditions
(8) and (9) and

‖p− v‖2 = (x3n+2 + 2x3n+1 + x3n+3)2 (12)

describe Case 2. Case 3 is defined by conditions (8), (9) and

‖p− v‖2 ≥ (x3n+2 + x3n+3)2. (13)

S1 denotes the set defined by conditions (5)− (11).
S2 denotes the set given by conditions (5)− (9), (11) and (12).
Meanwhile, S3 denotes the set given by the conditions (5)−(9), (11), and (13). The
set S1, S2 and S3 are nonconvex compact sets. Thus, problem (4) − (11) becomes
the convex maximization problem over a nonconvex set. A stationary point of this
problem satisfies a system of 9m + 6 equations and inequalities with 3n + 3m + 9
variables including Lagrange multipliers.

3. Global optimality conditions and algorithm. In previous section, we note
that the solution to Malfatti’s problem is
f∗ = max{max

x∈S1

f,max
x∈S2

f,max
x∈S3

f}. Let us consider again these problems

max
x∈Si

f, Si ⊂ R3n+3, i = 1, 2, 3. (14)

Problems (14) belong to a class of concave programming or equivalently, convex
maximization problem.

Global Optimality conditions for the convex maximization problem first formu-
lated by Strekalovsky, A.S. in 1987 [11]. Now we apply this result to problem (14)
which is the following:

Theorem 3.1. [11] Let z ∈ Si satisfy f ′(z) 6= 0. Then z is a solution to problem
(14) if and only if
〈f ′(y), x− y〉 ≤ 0 for all y ∈ Ef(z)(f) and x ∈ Si,

where Ec(f) = {y ∈ Rn|f(y) = c} is the level set of f at c and f ′(y) is the
gradient of f at y.
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Before presenting an algorithm for solving problem (14) it is useful to restate
Theorem 3.1 in a convenient way via the function Θ(z) defined for z ∈ Si:

Θ(z) = max
y∈Ef(z)(f)

Π(y),

where Π(y) = max
x∈Si

〈f ′(y), x− y〉.
It has been shown in [3] that the function Π(y) is continuous and directionally
differentiable. Since f is strongly convex, the set Ef(z)(f) is compact. Thus, Θ(z) <
+∞, We note that Π(y) ≤ Θ(z) for all y ∈ Ef(z)(f).

Theorem 3.2. Let z ∈ Si satisfy f
′(z) 6= 0, if Θ(z) = 0 then z is a global solution

to problem (14).

Proof. follows from the following inequalities:
〈f ′(y), x− y〉 ≤ Π(y) = max

x∈Si

〈f ′(y), x− y〉 ≤ Θ(z) = 0

which hold for all x ∈ Si and y ∈ Ef(z)(f).

Now we apply the Algorithm MAX in [3] to solve problem (14) numerically.

Algorithm MAX

Step 1. Choose a point x0 ∈ Si found as a local maximizer to problem (4)− (11)
by the interior point method. Assume that f ′(x0) 6= 0. Set k := 0.
Step 2. Solve the problem max

y∈E
f(xk)

(f)
Π(y).

Let yk be a solution to this problem, i.e.
Π(yk) = max

y∈E
f(xk)

(f)
max
x∈D
〈f ′(y), x− y〉.

Let Θ(xk) := Π(yk), and let xk+1 be a solution satisfying
Π(yk) = 〈f ′(yk), xk+1 − yk〉.
Step 3. If Θ(xk) = 0 then stop, and xk is a global solution.
Otherwise, set k = k + 1 and return to Step 2.

The convergence of the Algorithm is given by the following theorem.

Theorem 3.3. [3] The sequence{xk, k = 1, 2, . . . } generated by Algorithm MAX is
a maximizing sequence for problem (14),that is,

lim
k→∞

f(xk) = max
x∈Si

f(x),

and every accumulation point of the sequence {xk, k = 1, 2, . . . } is a global maxi-
mizer of the problem.

4. Computational Results. Algorithm MAX starts with an arbitrary local max-
imizer xk found by the interior point method with help of fmincon in Matlab. Note
that in numerical experiments we solved subproblem

max
y∈E

f(xk)
(f)

Π(y) at each iterations k = 1, 2, . . . , as problems with the single equality

constraint by the set covering method [9] while problems max
x∈Si

〈f ′(yk), x− yk〉 have

been solved by Lagrangian method. For a test purpose, the tetrahedron with ver-
tices A(1, 1, 0), B(4, 1, 0), C(3, 3, 0) and D(5, 4, 3) has been considered. As we can
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see in Section 2 that solving Malfatti’s problem consisted of three main cases. Then
this problem is the following for Case 1:

max f =
4

3
π(x310 + x311 + x312), (15)

−x3 + x10 ≤ 0,

−3x1 + 3x2 + x3 +
√

19x10 ≤ 0,

−3x2 + 3x3 +
√

18x10 ≤ −3,

6x1 + 3x2 − 5x3 +
√

70x10 ≤ 27,

−x6 + x11 ≤ 0,

−3x4 + 3x5 + x6 +
√

19x11 ≤ 0,

−3x5 + 3x6 +
√

18x11 ≤ −3,

6x4 + 3x5 − 5x6 +
√

70x11 ≤ 27,

−x9 + x12 ≤ 0,

−3x7 + 3x8 + x9 +
√

19x12 ≤ 0,

−3x8 + 3x9 +
√

18x12 ≤ −3,

6x7 + 3x8 − 5x9 +
√

70x12 ≤ 27,

(x4 − x1)2 + (x5 − x2)2 + (x6 − x3)2 − (x10 + x11)2 = 0,

(x7 − x4)2 + (x8 − x5)2 + (x9 − x6)2 − (x11 + x12)2 = 0,

(x7 − x1)2 + (x8 − x2)2 + (x9 − x3)2 − (x10 + x12)2 = 0,

x10 ≥ 0, x11 ≥ 0, x12 ≥ 0. (16)

For Case 2, we replace 15th constraint in (16) with the following constraint:
(x7 − x1)2 + (x8 − x2)2 + (x9 − x3)2 = (x10 + 2x11 + x12)2.
Also, for Case 3 instead of 15th constraint in (16), we have following constraint:

(x7 − x4)2 + (x8 − x5)2 + (x9 − x6)2 − (x11 + x12)2 ≥ 0.

In the computational experiment, from view point of geometric triviality , we
did not consider cases where at least one ball is not tangent to other two.

The performance of the proposed algorithm was tested on three cases of Malfatti’s
problem. The programming code for the algorithm was written in Matlab and run
on a computer Pentium Core 2. The results are given for each case in Table 1.

Table 1. Numerical results

Case lnitial local value Global value Computational time(min:sec)

Case 1 0.7086 0.8161 0:0.0988
Case 2 0.6037 0.8598 0:0.1968
Case 3 0.7328 0.9165 0:0.2152

The global solution to Malfatti’s problem (15) − (16) corresponding to Case 3
was f∗ = 0.9165 and the centers of the balls were:
(x∗1, x

∗
2, x
∗
3) = (3.1113, 2.2134, 0.5026), (x∗4, x

∗
5, x
∗
6) = (3.5735, 2.6507, 1.1138),

(x∗7, x
∗
8, x
∗
9) = (2.4012, 1.8053, 0.3336).
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During computational process, local and stationary points were examined by
Algorithm MAX. Geometric pictures showing global solutions of 3 cases are given
in Figures 1-3.
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Figure 1. Case 1
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Figure 2. Case 2

Conclusion. 200 years old Malfatti’s problem, for the first time, has been general-
ized as a high dimensional global optimization problem. The problem was reduced
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Figure 3. Case 3

to the convex maximization problem with 12 variables. The global optimality con-
ditions [11] as well as a global search algorithm in [3] have been applied to the
problem. Computational experiment was done for a given tetrahedron. This ap-
proach can be easily extended to a number of balls n ≥ 4. But it will be discussed
in a next paper. Clearly, there exists a relationship between Malfatti’s problem and
Tverberg theorem [12] in terms of partitions of a set of points but it has not been
considered in our paper.
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