
Using Parallel SAT Solving Algorithms to Study
the Inversion of MD4 Hash Function

Irina Gribanova, Oleg Zaikin, Ilya Otpuschennikov, and Alexander Semenov

Matrosov Institute for System Dynamics and Control Theory SB RAS, Irkutsk, Russia
the42dimension@gmail.com, zaikin.icc@gmail.com, otilya@yandex.ru,

biclop.rambler@yandex.ru

Abstract. In this paper we study the inversion problem of MD4 cryptographic
hash function. By MD4-k we denote a truncated variant of MD4 hash function
in which k represents a number of steps used to calculate a hash value (the full
version of MD4 function corresponds to MD4-48). H. Dobbertin has showed that
MD4-32 is not one-way. He suggested to add special conditions to the equations
that describe the computation of considered hash function. These additional con-
ditions allowed to solve the inversion problem of MD4-32 within a reasonable
time by solving corresponding system of equations. The main result of the pre-
sented paper is an automatic derivation of “Dobbertin’s conditions” using parallel
SAT solving algorithms. We also solved several inversion problems of functions
of the kind MD4-k (for k up to 39 inclusive). Our method significantly outper-
forms previously existing approaches for solving these problems.

Keywords: cryptanalysis, hash function, inversion problem, MD4, SAT, parallel
computing, MPI

1 Introduction

Hash function is a function which maps binary words of arbitrary length into binary
words of fixed length. More precisely, a hash function is a total computable discrete
function of the kind

χ : {0, 1}∗ → {0, 1}C , C = const. (1)

By {0, 1}k, k ∈ N we denote the set formed by all 2k different vectors of length k. By
{0, 1}∗ we denote the set of all binary words of an arbitrary finite length.

Hash functions are used in various areas of computer science, for example, to speed
up an access to large data sets. In cryptography and information security the range
of issues that can be solved using hash functions is especially wide. Cryptographic
hash functions meet additional requirement: corresponding functions should be hard
to invert. In particular, not only the inversion problem (i.e. the problem of finding a
preimage for a given hash value) but also the problem of finding collisions (i.e. the
problem of finding an arbitrary pair of messages that give the same hash) should be
hard.

In [1, 2] a method of finding collisions for hash functions from the MD family,
widely used at that time, was presented. Further this problem was discussed in a number

Параллельные вычислительные технологии (ПаВТ’2017) || Parallel computational technologies (PCT’2017)
agora.guru.ru/pavt

100

of papers, wherein various methods for constructing collisions were employed. The
possibility of effective collision search for the MD family hash functions resulted in
their exclusion from wide usage and replacement by other hash functions (mainly by
the SHA family hash functions) in most cryptographic systems. However, today even
for MD4 (the weakest hash function from the MD family) there are no successful results
in solving the problem of its inversion. Moreover, there are no algorithms that would
appear to be much more computationally stronger than the method proposed in [3] (one
of the first papers in which the problem of MD4 inversion was studied).

The main idea of the attack proposed in [3] consists in considering the truncated
variants of MD4 (with less than 48 steps of the hash value calculation) and some ad-
ditional conditions to the equations defining the corresponding function. In some cases
this approach allows to solve the corresponding system of equations on a parallel com-
puting system in reasonable time.

In the present paper we study the MD4 inversion problems using parallel algorithms
for solving Boolean satisfiability problem (SAT). This paper is organized as follows. In
Section 2 we present the necessary information concerning the algorithmic features of
MD4 and the basic idea of H. Dobbertin’s attack. In Section 3 we describe the foun-
dations of the SAT-based cryptanalysis. We also consider the reduction of the MD4
inversion problem to SAT and give a brief description of parallel algorithms applied to
the obtained SAT instances. Section 4 presents the results of computational experiments
and the comparison with results obtained in previous works.

2 Structure of MD4 and Basic Idea of Dobbertin’s Attack

The cryptographic hash function MD4 [4] was developed by R. Rivest in 1990. This
function is one of the first examples of practical implementation of the Merkle-Damgard
construction [5, 6]. The basic paradigm of the Merkle-Damgrad construction consists in
the fact that a hash value is a result of a sequence of similar actions, which is written
into a special register. Further this register is called the hash register. At the initial step
the hash register is filled with some known value (Initial Value, IV). In case of MD4

IV = {0x67452310, 0xEFCDAB89, 0x98BADCFE, 0x10325476}. (2)

At the next steps hash register states are modified by mixing the current state with parts
of the input message (which should be hashed). Like many other hash functions, MD4
works with input message divided into blocks with 512 bits in each. The value of MD4
is a binary 128-bit word. Basic primitives of MD4 are 32-bit words (as in many hash
functions which were developed later): 512-bit block is divided into 16 32-bit words,
128-bit hash is divided into 4 32-bit words.

At the initial stage MD4 algorithm uses a special padding procedure. After that
MD4 compression function fMD4 is applied to the obtained 512-bit block. The result
of fMD4 is 128-bit hash of the considered block. Hereinafter we don’t take padding
procedure into account. Thus, we consider only the inversion problem of fMD4. The
process of calculation of this function is an iterative procedure which is divided into 48
steps. On each step the value of one hash register cell (filled with 32-bit word) is up-
dated. Identifiers of these cells are called chaining variables. So, each chaining variable

Параллельные вычислительные технологии (ПаВТ’2017) || Parallel computational technologies (PCT’2017)
agora.guru.ru/pavt

101

takes values from {0, 1}32. We denote the chaining variables by letters a, b, c, d. The
process of hash calculation is divided into 3 rounds, each of them consists of 16 steps.
In each round a certain round function is used, which operates with 32-bit variables.
The calculation scheme of fMD4 is shown in Fig. 1.

12

12

12

12

�
MD4
(M)

3

IV

M M

Fig. 1. The calculation scheme of fMD4

Let us briefly comment on Fig. 1. By M = m1| . . . |m16 we denote the 512-bit
input block. By Φ1 − Φ3 the round transformations are denoted. For example, for the
first 4 steps the corresponding transformations of chaining variables are as follows:

a1 = (a0 + φ1(b0, c0, d0) +m1 + t1) ≪ s1a,
d1 = (d0 + φ1(a0, b0, c0) +m2 + t1) ≪ s1d,
c1 = (c0 + φ1(d0, a0, b0) +m3 + t1) ≪ s1c ,
b1 = (b0 + φ1(c0, d0, a0) +m4 + t1) ≪ s1b .

(3)

In these formulas “+” stands formod 232 summation of the corresponding numbers,
“≪ s” stands for the cyclic shift of a 32-bit word to s positions to the left. Constants ti,
and sia,b,c,d, i ∈ {1, 2, 3} (here i is the round number) are known from the specification
of the algorithm (for example, t1 = 0, t2 = 0x5A827999, t3 = 0x6ED9EBA1).

In each round with number i, i ∈ {1, 2, 3} all chaining variable are updated 4 times
by applying the round function φi. The MD4 round functions are as follows:

φ1(X,Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z),
φ2(X,Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z),
φ3(X,Y, Z) = X ⊕ Y ⊕ Z.

(4)

Arguments of these functions are 32-bit words, all logical operations are performed
component-wise over the corresponding vectors. The summation of the IV vector and
the value of hash register at the end of the third round presented in Fig. 1 is called
finalization stage.

By MD4-k we denote the hash function which corresponds to the execution of k-
steps of MD4 algorithm applied to IV with finalization stage performed after these

Параллельные вычислительные технологии (ПаВТ’2017) || Parallel computational technologies (PCT’2017)
agora.guru.ru/pavt

102

steps. For example, MD4-48 corresponds to the full-round version of MD4 hash func-
tion. An arbitrary function of the kind MD4-k, k ∈ {1, . . . , 48} is called a truncated
version of MD4.

In [3] an algorithm aimed at inversion of MD4-32 using an ordinary PC was pro-
posed. As a result, it was shown that 2-round version of MD4 hash function is not
one-way. The basic idea of the attack is as follows. By analyzing the first two round
functions it can be concluded that assignment of some chaining variables with some
constant leads to finding the majority of words from the set {m1, . . . ,m16} in a short
time.

In particular, H. Dobbertin suggested to fix chaining variables values with some
constant K at the steps with numbers 13, 17, 21, 25, 14, 18, 22, 26, 15, 19, 23, 27.
Then the value of the chaining variable b at the 28-th step is varied. It should be noted
that in this attack the value of variable b is recalculated at the 28-th step, but it isn’t
changed for the other 3 steps. Thus, if some value of b is determined, then the same
value of this variable is also determined for the steps 29, 30, 31. The fixation of K and
b at the steps mentioned before gives us an opportunity to derive the values of variables
m1,m2, . . . ,m12 andm16 of the input message. Their usage makes it possible to derive
the values of several more chaining variables and, finally, the value of b at the 28-th
step. The latter value can differ from the one fixed previously. In this case the attempt is
considered to be unsuccessful and the sequence of actions described above is repeated
for new b (in this case constant K may remain unchanged).

H. Dobbertin mentioned that in order to achieve successful results in the described
attack one needs to make about 232 attempts of selection of the value of b on the 28-th
step. So, the proper implementation of the presented algorithm can make it possible to
achieve the successful result even on a weak PC.

3 Reduction of the MD4-k Inversion Problems to SAT and the
SAT Version of Dobbertin’s Attack

In this section we describe some new techniques for SAT-based cryptanalysis and apply
them to the inversion problems of MD4 hash function.

SAT-based cryptanalysis is a relatively new direction in cryptanalysis implying the
usage of algorithms for solving Boolean satisfiability problem (SAT) for the inversion
of cryptographic functions. Let us remind that for SAT it is necessary for an arbitrary
Boolean formula F to decide whether it is satisfiable or not, i.e. if there exists an as-
signment of Boolean variables from this formula that makes it TRUE. Using Tseitin
transformations [7] the Boolean satisfiability problem for F can be reduced to SAT in
the Conjunctive Normal Form (CNF) in polynomial time on the size of F description.
Hereinafter by SAT we mean the problem of satisfiability of an arbitrary CNF.

According to the Cook theorem, a wide class of combinatorial problems can be
effective reduced to SAT, including the inversion problems of cryptographic functions:
for a given image from a range of values of considered function to find a preimage from
its domain (assuming that function is defined by known algorithm). Today there is a
number of automatic translation systems designed for effectively construction of SAT

Параллельные вычислительные технологии (ПаВТ’2017) || Parallel computational technologies (PCT’2017)
agora.guru.ru/pavt

103

encodings for inversion of cryptographic functions [8–11]. In all our computational
experiments we use the Transalg system [11].

Once a SAT encoding for the inversion problem of the considered cryptographic
function is built, the corresponding SAT instance is ready to be solved. A variety of
algorithms can be used for this purpose. However, according to numerous computa-
tional experiments, CDCL-based SAT solvers [12] are better suited for inversion of
cryptographic functions. The survey of algorithms and technologies underlying modern
CDCL-solvers can be found in [13].

It should be noted that cryptanalysis problems in the form of SAT are usually ex-
tremely hard even for the best-known SAT-solvers (except for the inversion problems of
some weak functions, e.g. the Geffe generator). Thus, for functions with serious crypto-
graphic resistance additional considerations should be used (these considerations may
arise from the algorithmic features of these functions). As usual, it is hard to avoid using
parallel computations for the real attacks. Below we provide a brief description of the
parallel SAT technologies which we applied to the inversion problems of MD4-k hash
functions.

Today there are two main approaches for the parallel solving of SAT instances: the
portfolio approach and the partitioning approach [14]. Portfolio approach can be con-
sidered as a multi-threaded parallelism, while partitioning-approach is the large-block
data parallelism. According to the portfolio approach multiple copies of a SAT solver
are used and, roughly speaking, each of these copies goes through the common search
space in different directions sharing accumulated information. In the partitioning ap-
proach a search space is divided into disjoint subdomains which are processed sepa-
rately. Thus, the partitioning approach is better suited to solve hard SAT instances in
distributed computing systems, while the portfolio approach shows the best results in
multithreaded systems.

As already mentioned, apart from parallelism, it is often possible to accelerate the
inversion of cryptographic functions by taking into account various features of these
functions. For example, in order to achieve results in solving the SAT instances for find-
ing collisions from MD family hash functions it is nessesary to add special conditions
called differential paths on chaining variables to the corresponding SAT-encodings. The
first successful attack of this kind has been shown in [15] where the authors have added
to the SAT encodings conditions specifying the differential paths described in [1, 2].

A similar situation occurs with respect to the inversion problems of MD4-k func-
tions. Dobbertin’s conditions described above represent additional constraints which
significantly reduce the search space. The following questions are: how successful these
additional constraints are, and are there more effective ones? The answers to these ques-
tions are discussed in the present paper.

Before proceeding to the submussion of our results, let us note that SAT solvers
can be considered as a means of “intellectual search”. Consequently, the use of a SAT
solver must be aimed primarily at the automation of a large number of similar opera-
tions. The technique of information preservation and non-chronological backtracking
used in CDCL-solvers can provide essential reduction of the amount of calculation in
comparison with the exhaustive search. Similar arguments were given in [15] where the

Параллельные вычислительные технологии (ПаВТ’2017) || Parallel computational technologies (PCT’2017)
agora.guru.ru/pavt

104

authors emphasize that they have used the SAT approach primarily in order to automate
the message modification phase forming the main part of the attack described in [1, 2].

In the Dobbertin’s attack the search through all possible values of variable b corre-
sponding to the 28-th step of the hash function is performed, wherein the value of K
may be fixed for different values of b. In the attack proposed below we use the value
K = 0 (as in [16]) and consider the inversion problem of 1128 hash, i.e. assuming that
the hash value consists of 128 ones.

The main difference between our attack and Dobbertin’s attack consists in the fact
that we search through all possible variants of assignment of chaining variables with
constant K = 0 using a parallel SAT solver. We do not use assignment of the variable
b on the 28-th step assuming that SAT solver automatically adjusts the values of the
unknown variables for a particular combination of chaining variables assigned with
constant K = 0.

For the purpose of the automatic search through different combinations of chaining
variables we use additional variables called switching variables. Let us describe the cor-
responding technique. By C∗ = C(fMD4−k(M) = 1128) we denote CNF encoding of
the inversion problem of fMD4−k function in point 1128. As in Dobbertin’s attack first
we consider the inversion problem of fMD4−32 function. In fact we need a procedure
that will allow to quickly add to the C∗ various combinations of chaining variables on
the steps with numbers from 1 to 32 assigned with constant K = 0. By zj we denote a
32-bit chaining variable of j-step. For zj there are 32 corresponding Boolean variables
yj1, . . . , y

j
32. Consider the elementary conjunction:

Rj = ¬yj1 ∧ · · · ∧ ¬yj32. (5)

Obviously, Rj is equal to 1 if and only if variable zj is assigned with constant
K = 0. For each j ∈ {1, . . . , 32} let us consider a new Boolean variable sj , which we
associate with Rj by the following formula:

F j = (¬sj ∨ ¬yj1) ∧ · · · ∧ (¬sj ∨ ¬yj32). (6)

Obviously, the substitution of sj = 1 into F j gives a formula which is logically equiv-
alent to Rj . The substitution of sj = 0 into F j gives a constant of 1. Consider the
following CNF:

C̃ = C∗ ∧ F 1 ∧ · · · ∧ F 32. (7)

According to the mentioned above, the substitution of any assignment s ∈ {0, 1}32 of
switching variables:

sj = αj , αj ∈ {0, 1}, j ∈ {1, . . . , 32}, (8)

in C̃ gives the inversion problem of MD4-32 function in point 1128 with additional
assignment with constant K = 0 of chaining variable zj for which corresponding αj

takes value 1. Let us note that such assignment can be considered in application to the
problem of the satisfiability of C̃ as an assumption and it is possible to apply incremen-
tal SAT technique [17] which allows to store and use the information obtained during
processing of various assumptions.

Параллельные вычислительные технологии (ПаВТ’2017) || Parallel computational technologies (PCT’2017)
agora.guru.ru/pavt

105

4 Computational Experiments

In our experiments we used two SAT solvers. The first one is our parallel SAT solver
PDSAT [18], which is based on the partitioning approach. This solver was designed
especially for solving SAT instances that encode inversion problems of cryptographic
functions. PDSAT is an MPI-program, in which there is one leader process, all the other
are computing processes (each process corresponds to 1 CPU core). PDSAT works in
two modes. In the estimation mode it searches for a decomposition set with good time
estimations. A decomposition set is in fact a set of Boolean variables, for which all their
possible assignments are generated. As a result, a family of SAT instances, where each
of instances is simpler than the original problem, was obtained. In this mode we use the
Monte Carlo approach and various optimization metaheuristics (simulated annealing,
tabu search, etc.). In the solving mode PDSAT solves all SAT instances from a family
obtained from a given decomposition set. CRYPTOMINISAT [10] is the second SAT
solver which was used in our experiments. It is not designed for launching on an MPI
cluster, so we launched it on a PC as a sequential program.

At the first stage we considered the MD4-31 inversion problem in point 1128. We
launched PDSAT in the solving mode on the decomposition set which consisted of
27 switching variables (see the previous section). Time limit of 0.01 second for each
subproblem was used. PDSAT was launched on 5 nodes of the “Academician V.M.
Matrosov” computing cluster of Irkutsk supercomputing center SB RAS1. Each node
of this cluster consists of 2 16-core CPUs AMD Opteron 6276, so 160 CPU cores were
used in total. All 227 SAT instances were solved in 10 minutes 21 seconds, the pro-
cessing of 4.88 % SAT instances was interrupted by time limit. As a result, 6 satisfying
assignments (6 solutions of the considered inversion problem) were found. It should be
noted that one of the assignments of switching variables with constant K = 0 was in
fact the Dobbertin’s conditions. Thus, we found these conditions in automatic mode.

At the second stage we considered the MD4-39 inversion problem taking into ac-
count results from [16] where the authors involved 11 of the 12 Dobbertin’s conditions.
We constructed 3 CNFs in which we fixed the values of 11 switching variables corre-
sponding to aforementioned 11 conditions, and assigned a different number of variables
encoding the chaining variable corresponding to the omitted Dobbertin’s condition. The
value of this chaining variable was taken from one of the satisfying assignments of
MD4-31 inversion problem. In the first CNF the first 8 bits of this chaining variable
were assigned. In the second and third CNFs the first 16 and 32 bits of this chaining
variable were assigned (respectively).

We launched CRYPTOMINISAT on a PC equipped with the i5-2410M CPU (1 core
was used). The best result was obtained on the first CNF – a satisfying assignment was
found in 15 minutes. We also employed PDSAT in the solving mode. The best result
was obtained on the second CNF – the corresponding problem was solved in 5 seconds
on 5 computing nodes (160 CPU cores in total). Thus, if we recalculate this time on
the case of a sequential launch, we obtain the time of about 13 minutes. It should be
noted, that in [16] this inversion problem was solved in about 8 hours on 1 CPU core.
So, our approach allowed to solve this problem much faster. In Table 1 we show 4 input

1 http://www.hpc.icc.ru

Параллельные вычислительные технологии (ПаВТ’2017) || Parallel computational technologies (PCT’2017)
agora.guru.ru/pavt

106

messages M found in our experiments by PDSAT and CRYPTOMINISAT. All these
messages correspond to the hash value 1128.

Table 1. Messages found for the MD4-39 inversion problem in point 1128.

No. Message
1 0xc7c08b1c,0xa57d8667,0xa57d8667,0x07e14fec,

0xa57d8667,0xa57d8667,0xa57d8667,0xa8cea698,
0xa57d8667,0xa57d8667,0xa57d8667,0x28e987ac,
0x4665c5f3,0x8c49173f,0xabc74a06,0x0cd9d788

2 0x40b2a2ff,0xa57d8667,0xa57d8667,0x2b010cef,
0xa57d8667,0xa57d8667,0xa57d8667,0xccfef2c3,
0xa57d8667,0xa57d8667,0xa57d8667,0xf041ded3,
0x5443c70c,0xaadd4c2b,0xe587e70e,0xe5bad382

3 0x40b26b1f,0xa57d8667,0xa57d8667,0xa87153ec,
0xa57d8667,0xa57d8667,0xa57d8667,0xbaee84bb,
0xa57d8667,0xa57d8667,0xa57d8667,0x6a228d63,
0x5960f23b,0x1915d72b,0xf2d3b064,0x7d85d6db

4 0xec3a2319,0xa57d8667,0xa57d8667,0xf87f9cee,
0xa57d8667,0xa57d8667,0xa57d8667,0x80a0aeb0,
0xa57d8667,0xa57d8667,0xa57d8667,0x51c2c922,
0x964933fa,0x0545c48c,0x98968391,0x783c0174

5 Related Work

As we mentioned above, the first successful example of the SAT approach application
to the inversion of relevant cryptographic functions was presented in [15]. In that paper
a SAT-based variant of attack by X. Wang et al. [1, 2] was suggested. The method used
in [15] allows to find one-block collisions for MD4 relatively fast. To find two-block
collisions for MD5 much more computational resources must be used. We significantly
increased the efficiency of the approach proposed in [15]: the application of SAT en-
codings constructed by the Transalg system [11] allowed us to generate one-block col-
lisions for MD4 approximately 1000 times faster. By applying modern multithreaded
SAT solvers we managed to find two-block collisions for MD5 in reasonable time us-
ing one computing cluster node. As a result, a family of such collisions of special kind
(with a large amount of most significant bits) was constructed[19].

The first SAT-based version of Dobbertin’s attack was proposed in [16]. The cor-
responding chaining variables were assigned with constant K = 0. It should be noted
that in that paper the Dobbertin’s conditions were used in their original form – with no
attempts to justify or derive them. Also in [16] one Dobbertin’s condition was thrown
out without any justification too.

In [16] it took about 8 hours on the MINISAT solver to invert MD4-39 with the
Dobbertin’s conditions for chaining variables of the first two rounds. Thus, we can

Параллельные вычислительные технологии (ПаВТ’2017) || Parallel computational technologies (PCT’2017)
agora.guru.ru/pavt

107

conclude, that the effectiveness of the method we suggested is significantly higher, than
the one proposed in [16].

6 Conclusions and Future Work

In this paper, we managed to automatically synthesize conditions from Dobbertin’s at-
tack using parallel SAT solving algorithms. We also studied the inversion problem of the
MD4-39 hash function. By applying parallel SAT algorithms this problem was solved
faster, than it was done in previous works. In the nearest future we plan to apply parallel
SAT algorithms to inversion problems of some other hash functions (from the MD and
SHA hash families).

Acknowledgments This research was funded by Russian Science Foundation (project
No. 16-11-10046). Oleg Zaikin and Ilya Otpuschennikov are partially funded by Coun-
cil for Grants of the President of the Russian Federation (stipends SP-1184.2015.5 and
SP-4751.2016.5 respectively). We thank Stepan Kochemazov for his valuable com-
ments.

References

1. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions md4
and ripemd. In: Proceedings of the 24th Annual International Conference on Theory and
Applications of Cryptographic Techniques. EUROCRYPT’05, Berlin, Heidelberg, Springer-
Verlag (2005) 1–18

2. Wang, X., Yu, H.: How to break md5 and other hash functions. In: Proceedings of the 24th
Annual International Conference on Theory and Applications of Cryptographic Techniques.
EUROCRYPT’05, Berlin, Heidelberg, Springer-Verlag (2005) 19–35

3. Dobbertin, H.: The first two rounds of md4 are not one-way. In Vaudenay, S., ed.: Fast
Software Encryption. Volume 1372 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (1998) 284–292

4. Rivest, R.L.: The MD4 message digest algorithm. In Menezes, A., Vanstone, S.A., eds.:
Advances in Cryptology - CRYPTO’90, Proceedings. Volume 537 of Lecture Notes in Com-
puter Science., Springer (1990) 303–311

5. Damgård, I.B.: A design principle for hash functions. In: Proceedings on Advances in
Cryptology. CRYPTO ’89, New York, NY, USA, Springer-Verlag New York, Inc. (1989)
416–427

6. Merkle, R.C.: A certified digital signature. In: Proceedings on Advances in Cryptology.
CRYPTO ’89, New York, NY, USA, Springer-Verlag New York, Inc. (1989) 218–238

7. Tseitin, G.S. In: On the Complexity of Derivation in Propositional Calculus. Springer Berlin
Heidelberg, Berlin, Heidelberg (1983) 466–483

8. Erkök, L., Matthews, J.: High assurance programming in cryptol. In Sheldon, F.T., Peter-
son, G., Krings, A.W., Abercrombie, R.K., Mili, A., eds.: Fifth Cyber Security and Informa-
tion Intelligence Research Workshop, CSIIRW’09, Knoxville, TN, USA, April 13-15, 2009,
ACM (2009) 60

9. Janicic, P.: URSA: a System for Uniform Reduction to SAT. Logical Methods in Computer
Science 8(3) (2012) 1–39

Параллельные вычислительные технологии (ПаВТ’2017) || Parallel computational technologies (PCT’2017)
agora.guru.ru/pavt

108

10. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems.
In Kullmann, O., ed.: SAT. Volume 5584 of Lecture Notes in Computer Science., Springer
(2009) 244–257

11. Otpuschennikov, I., Semenov, A., Gribanova, I., Zaikin, O., Kochemazov, S.: Encoding
cryptographic functions to SAT using TRANSALG system. In Kaminka, G.A., Fox, M.,
Bouquet, P., Hüllermeier, E., Dignum, V., Dignum, F., van Harmelen, F., eds.: ECAI 2016
- 22nd European Conference on Artificial Intelligence, 29 August-2 September 2016, The
Hague, The Netherlands - Including Prestigious Applications of Artificial Intelligence (PAIS
2016). Volume 285 of Frontiers in Artificial Intelligence and Applications., IOS Press (2016)
1594–1595

12. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfia-
bility. IEEE Trans. Computers 48(5) (1999) 506–521

13. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In
Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. Volume
185 of Frontiers in Artificial Intelligence and Applications. IOS Press (2009) 131–153

14. Hyvärinen, A.E.J.: Grid Based Propositional Satisfiability Solving. PhD thesis, Aalto Uni-
versity (2011)

15. Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash functions. In
Biere, A., Gomes, C.P., eds.: SAT. Volume 4121 of Lecture Notes in Computer Science.,
Springer (2006) 102–115

16. De, D., Kumarasubramanian, A., Venkatesan, R.: Inversion attacks on secure hash functions
using SAT solvers. In Marques-Silva, J., Sakallah, K.A., eds.: Theory and Applications of
Satisfiability Testing - SAT 2007, Proceedings. Volume 4501 of Lecture Notes in Computer
Science., Springer (2007) 377–382

17. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes
Theor. Comput. Sci. 89(4) (2003) 543–560

18. Semenov, A., Zaikin, O.: Algorithm for finding partitionings of hard variants of boolean sat-
isfiability problem with application to inversion of some cryptographic functions. Springer-
Plus 5(1) (2016) 1–16

19. Bogachkova (Gribanova), I., Zaikin, O., Kochemazov, S., Otpuschennikov, I., Semenov, A.,
Khamisov, O.: Problems of search for collisions of cryptographic hash functions of the MD
family as variants of Boolean satisfiability problem (in Russian). Numerical Methods and
programming 16(1) (2015) 61–77

Параллельные вычислительные технологии (ПаВТ’2017) || Parallel computational technologies (PCT’2017)
agora.guru.ru/pavt

109

	Короткие статьи
	I. Gribanova, O. Zaikin, I. Otpuschennikov, A. Semenov

