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1. INTRODUCTION

Consideration is given to a system of ordinary differential equations

Ax′(t) +Bx(t) = 0, t ∈ T = [0,+∞), (1.1)

where A and B are the given real (n× n) matrices and x(t) is the desired n-dimensional function.
It is assumed that detA = 0. Systems of this kind are called the differential-algebraic equations
(DAE). The implication index reflecting complexity of the system internal structure is the most
important characteristic of DAE.

DAE models the processes in many application fields such as the automatic control theory, opti-
mal control with mixed constraints, theory of electronic circuits and electrical networks, mechanics,
chemical kinetics, hydrodynamics, heat engineering, and so on.

The studies of DAE robust stability are currently only in embryo, and the amount of publications
is scarce. The main difficulty facing the researchers of the DAE robust properties lies in the fact
that in the case of high index the internal system structure can vary at perturbation of the input
data.

There exist results on the robust stability and estimation of the stability radius of the stationary
DAE [1–3] that were obtained by reducing the system to the canonical Kronecker–Weierstrass
form. As for the nonstationary DAE, there exist results for the system of index one with periodic
coefficients using the tractability index approach relying on construction of projectors on the kernel
[4, 5].

It deserves noting that construction of the matrices rearranging the stationary DAE in the
Kronecker–Weierstrass form is a challenge. Therefore, the criteria established on the basis of this
structural form are often nonconstructive. The present publications attempted to determine robust
stability conditions using another, equivalent structural form which is free of this disadvantage. This
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structural form is equivalent to the original system in the sense of solutions, and its construction
does without change of variables. The conditions guaranteeing that introduction of the matrix
uncertainties in the system coefficients does not violate the differential order and internal structure
of the system were obtained under assumptions ensuring existence of an equivalent structural
form of DAE (1.1). Under the assumptions ensuring retention of the structure, obtained were
the sufficient conditions for robust stability and values of the real stability radii for DAE of an
arbitrarily high implication index.

2. EQUIVALENT STRUCTURAL FORM FOR LINEAR DAE

For system (1.1), define the (n(r + 1)× n) matrices

Br = colon (B,O, . . . , O) , Ar = colon (A,B,O, . . . , O) ,

the (n(r + 1)× nr) matrix

Λr =

























O O . . . O O

A O . . . O O

B A . . . O O
...

... . . .
...

...

O O . . . A O

O O . . . B A

























and the (n(r + 1)× n(r + 2)) matrix

Dr =
(

Br Ar Λr

)

.

Assume that for some r (0 6 r 6 n) there exists in the matrix Dr a nonsingular minor of the
n(r + 1)th order comprising λ = rankΛr columns of the matrix Λr and all columns of the matrix Ar.
Such minor is called the resolving minor.

Denote d = nr − λ. Assume that known are the columns of the matrix Dr that are included in
the resolving minor. Delete n− d columns of the matrix Br that are not included in the aforemen-
tioned minor. After a corresponding permutation of the columns in Dr we get the matrix

Γr = Dr diag

{

Q

(

O

Ed

)

, Q, . . . , Q

}

, 1 (2.1)

where Ed is the identity matrix of the order d, Q is an (n × n) permutation matrix.2

The matrix Q is constructed as follows. Denote by i1, i2, . . . , id and id+1, id+2, . . . , in the numbers
of columns of the matrix Br included or not in the resolving minor. Premultiplication of the
matrix Q by Br permutes in Br each (id+k)th column (k = 1, n− d) to the kth place, and each
(ij)th column, (j = 1, d) to the place numbered n− d+ j. The matrix Q is invertible and consists
of zeros and n units, the elements with indices (id+k, k) and (ij , n− d+ j) being equal to unit.

It is well known [6, p. 313] that in the case of regularity of the matrix bundle cA + B, that is,
det (cA+B)6≡0, there exist invertible (n× n) matrices P and S such that

PAS =

(

O N

En−σ O

)

, PBS =

(

O Eσ

G O

)

, (2.2)

1 The notation diag {A1, . . . , As} denotes a quasidiagonal matrix with blocks listed in the parentheses on main
diagonal, the rest of the elements being zeros.

2 See [6, pp. 127, 128] for the matrices of permutations of rows and columns.
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where N is the superdiagonal matrix with ρ square zero blocks on the diagonal so that Nρ = O

and G is a quadratic matrix of the order n− σ.

Lemma 1. Let the matrix bundle cA+B be regular. Then there exists an operator

R = R0 +R1
d

dt
+ . . .+Rρ

(

d

dt

)ρ

, (2.3)

where Rj are the (n× n) matrices (j = 0, ρ), rearranging system (1.1) in

Ã

(

x′1(t)

x′2(t)

)

+ B̃

(

x1(t)

x2(t)

)

= 0, (2.4)

where colon (x1(t), x2(t)) = Q̄−1x(t), Q̄ is a permutation matrix

Ã =

(

O O

En−σ O

)

= (R0A+R1B) Q̄, B̃ =

(

J1 Eσ

J2 O

)

= R0BQ̄. (2.5)

Additionally, the operator R has an inverse operator like

L = L0 + L1
d

dt
. (2.6)

The lemma is proved in the Appendix.

Remark 1. Having put down the algebraic relations to be satisfied by the coefficients of the
mutually inverse operators (2.3) and (2.6), one can make sure that the matrix R0 is invertible and

L0 = R−1
0 , L1 = −R−1

0 R1R
−1
0 . (2.7)

Definition 1. By the implication index of DAE (1.1) is meant the least value of r under which
in the matrix Dr there exists a resolving minor.

Definition 2. By the solution of DAE (1.1) is meant the n-dimensional vector function u∗(t) ∈
C

1(T ) at substitution transforming system (1.1) into an identity.

Lemma 2. Let the bundle cA+B be regular. Then, systems (1.1) and (2.4), (2.5) are equivalent

in the sense of solutions. At that, r = ρ, d = σ, and the matrices Q and Q̄ from (2.1) and (2.5)
can be selected so that Q = Q̄.

The proof is given in the Appendix.

Definition 3. By the equivalent form for DAE (1.1) is meant system (2.4), (2.5).

It was shown in [7] that the coefficients of the operator R are defined uniquely by

(

R0 R1 . . . Rr

)

=
(

En O . . . O
)

Γ⊤
r

(

ΓrΓ
⊤
r

)−1
.

3. PERTURBATIONS NOT AFFECTING THE INTERNAL SYSTEM STRUCTURE

Consider the perturbed DAE system

(A+∆2) x
′(t) + (B +∆1) x(t) = 0, (3.1)

where ∆1 and ∆2 are the (n × n) indefiniteness matrices.
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By applying operator (2.3) to (3.1), we get the system

ÃQ−1x′(t) + B̃Q−1x(t) +
r
∑

j=0

Rj

(

∆2x
(j+1)(t) + ∆1x

(j)(t)
)

= 0, (3.2)

where Q is the matrix from (2.1), and Ã and B̃ obey (2.5). Obviously, introduction of perturbations
in the general case can change both the order and structure of the system under consideration. To
enable analysis of DAE (3.1), we introduce the following definition using the information about
system (2.4), (2.5) that was acquired with the use of the operator R.

Definition 4. The perturbations ∆1 and ∆2 are said not to affect the internal structure of
DAE (1.1) if there exists an invertible operator

R̃ =
r̃
∑

j=0

R̃j

(

d

dt

)j

(3.3)

such that its action on system (3.1) rearranges it in

(

O O

En−d O

)

Q−1x′(t) +

(

G1 Ed

G2 O

)

Q−1x(t) = 0, (3.4)

where r̃ > r, and G1 and G2 are some matrices of corresponding sizes.

Theorem 1. It is necessary and sufficient that the matrix bundle Gc = c (A+∆2) +B +∆1 be

regular lest the perturbations ∆1 and ∆2 affect the structure of DAE (3.1),

Theorem 1 is proved in the Appendix.

The theorem is theoretically significant, but its use for determination of the robust stability
conditions is difficult. Therefore, we determine the sufficient conditions lest the perturbations ∆1

and ∆2 change the internal DAE structure, and begin by considering the case of no perturbation
in the matrix at the derivative:

Ax′(t) + (B +∆1)x(t) = 0. (3.5)

Under conditions supporting existence of operator (2.3), DAE (3.2), (2.5) are given by

(

O O

En−d O

)(

x′1(t)
x′2(t)

)

+

(

J1 Ed

J2 O

)(

x1(t)
x2(t)

)

+
r
∑

j=0

Rj

(

∆1,1x
(j)
1 (t) + ∆1,2x

(j)
2 (t)

)

= 0, (3.6)

where colon (x1(t), x2(t)) = Q−1x(t),

(∆1,1 ∆1,2 ) = ∆1Q. (3.7)

Denote

R̄ = colon (R2, R3, . . . , Rr ) , (3.8)
(

Υ0,1

Υ0,2

)

= R0 ∆1,1,

(

Υ0,3

Υ0,4

)

= R0∆1,2, (3.9)

the matrices Υ0,1, Υ0,2, Υ0,3, and Υ0,4 having, respectively, the sizes d× (n− d), (n− d)× (n− d),
d× d, and (n− d)× d.
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Lemma 3. Let there be a resolving minor in the matrix Dr, and also:

1) R̄∆1 = O, R1∆1,2 = O;

2) ‖Υ1,2‖ < 1;

3) ‖U‖ < 1.

Then, the perturbation ∆1 does not affect the structure of DAE (1.1).

Here,

U = Υ0,3 −Υ1,1 (En−d +Υ1,2)
−1 Υ0,4, (3.10)

colon (Υ1,1, Υ1,2 ) = R1∆1,1, (3.11)

the matrices Υ1,1 and Υ1,2 having the respective sizes d× (n− d) and (n− d)× (n− d), ‖ ∗ ‖ de-

notes the spectral norm of the matrix.3

At that, in system (3.4)

G1 = F−1Ψ1, G2 = (En−d +Υ1,2)
−1
[

J2 +Υ0,2 −Υ0,4F
−1Ψ1

]

, (3.12)

Ψ1 = J1 +Υ0,1 −Υ1,1 (En−d +Υ1,2)
−1 (J2 +Υ0,2) , (3.13)

F = Ed + U. (3.14)

The proof is left to the Appendix.

Assumption 3 of Lemma 3 can be replaced by a condition allowing one to avoid inversion of the
matrix En−d +Υ1,2:

‖ (E −Υ1,1 ) ‖‖R0∆1,2‖
1− ‖Υ1,2‖

< 1. (3.15)

We turn to a more general system (3.1).

Lemma 4. Let in the matrix Dr there be a resolving minor and also:

1) ∆2 = −R−1
0 R1∆1;

2) ‖ (Ed O )R0∆1,2‖ < 1.

Then, the perturbations ∆1 and ∆2 do not affect the structure of DAE (1.1).

At that, in (3.4)

G1 = (Ed +Υ0,3)
−1 (J1 +Υ0,1) ,

G2 = J2 +Υ0,2 −Υ0,4 (Ed +Υ0,3)
−1 (J1 +Υ0,1) .

(3.16)

The lemma is proved in the Appendix.

Example. Consider the system







1 0 −1
0 0 −1
0 0 0






x′(t) +







2 −1 −2
0 −1 2
0 0 1






x(t) = 0, (3.17)

and find for it perturbations not affecting its structure.

3 ‖A‖ = max
i

√

λi(A∗A), A∗ is conjugate matrix, and λi(A
∗A) are the eigenvalues of the matrix A∗A.
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First of all, one has to establish the index of DAE (3.17), for which purpose we construct the
matrix

D2 =





































2
0
0

−1 −2 1 0 −1
−1 2 0 0 −1
0 1 0 0 0

2 −1 −2 1
0 −1 2 0
0 0 1 0

2
0
0

0
0
0

−1
−1
0

−1
−1
0

−2 1
2 0
1 0

0
0
0

−1
−1
0





































.

One can readily see that there is no resolving minor in the matrix D1. Such minor exists in the
matrix D2; its columns are encompassed by the dashed line. Therefore, the index of system (3.17)
r = 2, and at that d = 2, Q = E3, and rankΛ2 = 4.

The operator rearranging DAE (3.17) in system (2.4), (2.5) is given by

R =







0 −1 2
0 0 1
1 −1 4






+







0 0 −1
0 0 0
0 0 0







d

dt
.

Consider the assumptions of Lemma 3.

According to (3.8), R̄ = O. The indefiniteness matrix is represented as (see (3.7))

∆1 = (∆1,1 ∆1,2 ) , ∆1,1 =







δ1,1
δ2,1
δ3,1






, ∆1,2 =







δ1,2 δ1,3
δ2,2 δ2,3
δ3,2 δ3,3






. (3.18)

Since R1∆1,2 =







−δ3,2 −δ3,3
0 0
0 0






, condition 1 of Lemma 3 assumes the form

δ3,2 = δ3,3 = 0. (3.19)

According to (3.11), Υ1,1 =

(

−δ3,1
0

)

, Υ1,2 = (0). Consequently, assumption 2 is satisfied for

any matrix ∆1.

Condition 3 is representable as

‖U‖ =
√

(δ3,1(δ1,2 − δ2,2)− δ2,2)
2 + (δ3,1(δ1,3 − δ2,3)− δ2,3)

2 < 1. (3.20)

With provision for ‖(E −Υ1,1, )‖ =
√

1 + δ23,1, one can also easily obtain condition (3.15):

√

1 + δ23,1

∥

∥

∥

∥

∥

(

−δ2,2 −δ2,3
δ1,2 − δ2,2 δ1,3 − δ2,3

)∥

∥

∥

∥

∥

< 1. (3.21)
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According to Lemma 3, therefore, in system (3.5) the perturbation matrix ∆1 not affecting the
structure must be given by

∆1 =







δ1,1 δ1,2 δ1,3
δ2,1 δ2,2 δ2,3
δ3,1 0 0






,

where δi,j are the real numbers satisfying inequality (3.20) or (3.21).

Let us turn to the assumptions of Lemma 4.

Determine R−1
0 =







−1 −2 1
−1 2 0
0 1 0






. With regard for representation (3.18), for ∆1 condition 1 of

Lemma 4 is given by

∆2 =







−δ3,1 −δ3,2 −δ3,3
−δ3,1 −δ3,2 −δ3,3
0 0 0






.

Condition 2 implies that
∥

∥

∥

∥

∥

(

2δ3,2 − δ2,2 2δ3,3 − δ2,3
δ3,2 δ3,3

)∥

∥

∥

∥

∥

< 1.

4. ROBUST STABILITY

For DAE (1.1) formulate the Cauchy problem

x(t0) = x0, (4.1)

where t0 ∈ T , x0 ∈ R
n is the given vector.

Remark 2. It immediately follows from the results established in [7] that in the case of a regular
matrix bundle cA+B the equality

J1x0,1 + x0,2 = 0, (4.2)

is the necessary and sufficient condition for solvability of problem (1.1), (4.1) over the interval
[t0,+∞). Here, colon (x0,1, x0,2) = Q−1x0, x0,1 ∈ R

n−d, x0,2 ∈ R
d, the matrix J1 is defined in (2.5).

At that, if solution of problem (1.1), (4.1) exists, it is unique.

Below we assume that the initial conditions (4.1) satisfy (4.2). Such initial data are called
coordinated with system (1.1).

Let system (1.1) be asymptotically stable. The problem of its robust stability lies in determining
the conditions to be satisfied by the real perturbation matrices ∆1 and ∆2 for system (3.1) to be
also asymptotically stable.

Remark 3. Under the assumptions of Lemma 2, DAE (2.4), (2.5) and, consequently, system (1.1)
are asymptotically stable if and only if all eigenvalues of the matrix J2 have positive real parts.

Definition 5. Let λi(B) be the eigenvalues of the (n× n) matrix B and Reλi(B) > 0 (i = 1, n).
By the radius of stability of the system

x′(t) +Bx(t) = 0 (4.3)

is meant the magnitude

γ∗ = sup
γ

{

γ : Reλi(B +∆) > 0 ∀i = 1, n ∀‖∆‖ 6 γ
}

.
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The following conditions for robust stability of DAE (1.1) are based on the well-known results
for systems like (4.3) that were expounded in the monograph [8, pp. 201, 203].

Denote j =
√
−1.

Lemma 5. Let all eigenvalues of the matrix B have positive real parts. The system

x′(t) + (B +∆)x(t) = 0 (4.4)

is asymptotically stable if

‖∆‖ < γc∗ = inf
ω

β1(jωE +B),

ω is a real parameter, and β1 is the least singular number of the matrix jωE +B.

Denote W (ω) = Re (jωE +B)−1, V (ω) = Im (jωE +B)−1 and compose a block matrix

H(ω,α) =

(

W (ω) −αV (ω)
α−1V (ω) W (ω)

)

(4.5)

depending on two real parameters ω and α.

Lemma 6. Let all eigenvalues of the matrix B have positive real parts. System (4.4) is asymp-

totically stable if

‖∆‖ < γr∗ = inf
ω

inf
α∈(0,1]

β2n−1 (H(ω,α)) ,

where β2n−1 are the second from the left arranged in the ascending order singular numbers of the

matrix H(ω,α).

The magnitudes γc∗ and γr∗ are the complex and real stability radii of system (4.3) in the case
of complex and real perturbation matrix, respectively. Despite the fact that the estimate γr∗ > γc∗
is valid and the present paper disregards the complex perturbations, here we present and use both
Lemmas 5 and 6 because verification of the conditions of Lemma 5 is much simpler.

5. CONDITIONS FOR ROBUST DAE STABILITY

Let all assumptions of Lemma 3 be satisfied for system (3.5). Then, by Theorem 1 the bundle
cA+B+∆1 is regular. By reasoning as at proving Lemma 2, one can demonstrate that systems (3.5)
and (3.4), (3.12)–(3.14) have the same set of solutions. Therefore, system (3.5) is asymptotically
stable if and only if system (3.4) is asymptotically stable.

The matrix G2 from (3.12) is representable as G2 = J2 +Θ, where

Θ = (E +Υ1,2)
−1 (−Υ1,2 Υ0,2 Υ0,4)







En−d O O

O En−d O

O O −F−1













J2
En−d

Ψ1






. (5.1)

In the case of λi(J2) > 0 (i = 1, n− d), Lemma 5 enables one to get a sufficient condition for
asymptotic stability of the differential subsystem DAE (3.4)

x′1(t) +G2x1(t) = 0. (5.2)

Namely, system (5.2) is asymptotically stable if

‖Θ‖ < inf
ω

β1 (jωE + J2) . (5.3)
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Obviously, system (3.4) is also asymptotically stable. Thereafter according to the above reasoning,
system (3.5) also features the same property.

Since in (3.14) F = Ed +U , it follows from condition 3 of Lemma 3 that ‖F−1‖ 6
1

1−‖U‖ . In its
turn, valid is the estimate

∥

∥

∥diag
{

E, −F−1
}∥

∥

∥ 6
1

1− ‖U‖ .

With regard for assumption 2 of Lemma 3 and representation (5.1), we obtain

‖Θ‖ 6
‖(−Υ1,2 Υ0,2 Υ0,4 )‖ ‖colon (J2, En−d, Ψ1)‖

(1− ‖Υ1,2‖) (1− ‖U‖) .

The aforementioned suggests the following theorem.

Theorem 2. Let all assumptions of Lemma 3 be satisfied, and also

1) in DAE (2.4), (2.5) all characteristic numbers of the matrix J2 have positive real parts,

2)
‖(−Υ1,2 Υ0,2 Υ0,4 )‖‖colon (J2,En−d,Ψ1)‖

(1−‖Υ1,2‖)(1−‖U‖) < inf
ω

β1 (jωEn−d + J2),

where β1 is the least singular number of the matrix jωEn−d + J2, U is calculated from (3.10), the
matrices Υi,j obey the equalities (3.9), (3.11), (3.7).

Then, system (3.5) if asymptotically stable.

It is easy to demonstrate that inequality (5.3) is the condition for robust stability of system (3.5),
a condition weaker than assumption 2 of Theorem 2, although its verification is generally a very
nontrivial problem.

By relying on Lemma 6 one can establish the condition for robust stability of DAE (3.5). For
that, assumption 2 in Theorem 2 must be replaced by the condition

‖(−Υ1,2 Υ0,2 Υ0,4 )‖ ‖colon (J2, En−d, Ψ1)‖
(1− ‖Υ1,2‖) (1− ‖U‖) < inf

ω
inf

α∈(0,1]
β2(n−d)−1H(ω,α),

where the matrix H(ω,α) is determined from (4.5),

W (ω) = Re(jωE + J2)
−1, V (ω) = Im(jωE + J2)

−1, (5.4)

β2(n−d)−1 is the second from the right of the arranged in the ascending order singular numbers of
the matrix H(ω,α).

Definition 6. Let λi(J2) be the eigenvalues of the (n−d)×(n−d) matrix J2 and Reλi(J2) > 0
(i = 1, n − d). Under the assumptions of Lemma 3, by the stability radius of DAE (1.1) is meant
the magnitude

γ∗ = sup
γ

{

γ : Reλi (J2 +Θ) > 0 ∀i = 1, n− d ∀‖Θ‖ 6 γ
}

,

where Θ is calculated from (5.1).

Corollary. Let all assumptions of Lemma 3 be satisfied and Reλi(J2) > 0 (i = 1, n− d). Then,

the stability radius obeys

γ∗ = inf
ω

inf
α∈[0,1]

β2(n−d)−1H(ω,α). (5.5)
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Validity of the corollary follows from the above reasoning and Lemma 6.

Unfortunately, at verifying condition 2 of Theorem 2 one has to calculate the matrix (E +Υ1,2)
−1

occurring in the expression for Ψ1 (see (3.13)). We establish an alternative condition enabling one
to do without matrix inversion.

By using the permutation matrix Q from (2.1), we decompose the matrix B into blocks

(B1 B2 ) = BQ,

where B1 and B2 consist of n− d and d columns, respectively.

The matrix Ψ1 is representable as

Ψ1 = (E −Υ1,1 )

(

E O

O (E +Υ1,2)
−1

)

R0 (B1 +∆1,1) . (5.6)

By allowing for condition 2 of Lemma 3, one can easily demonstrate that

‖diag {E, (E −Υ1,1 )}‖ = max{1, ‖ (E −Υ1,1 ) ‖} = κ, (5.7)
∥

∥

∥

(

diag
{

E, (E +Υ1,2)
−1
})∥

∥

∥ 6
1

1− ‖Υ1,2‖
. (5.8)

Condition 2 of Theorem can be replaced by a stronger one:

‖(−Υ1,2 Υ0,2 Υ0,4 )‖ ‖colon (J2, E,R0(B1 +∆1,1))‖κ
(1− ‖Υ1,2‖)2 (1− ‖U‖)

< inf β1 (jωEn−d + J2)

obtained using (5.1), (5.6)–(5.8).

We determine the conditions for robust stability of the system with indefiniteness in the form
of (3.1). Assume that the assumptions of Lemma 4 are valid.

It is possible to demonstrate as it was done above that system (3.1) is asymptotically stable if
and only if system (3.4), (3.16) is asymptotically stable.

According to Lemma 5, the differential subsystem (5.2) is asymptotically stable if satisfied is
the inequality

‖Θ1‖ < inf
ω

β1 (jωE + J2) , (5.9)

where

Θ1 = (Υ0,2 Υ0,4 )

(

E O

O − (E +Υ0,3)
−1

)(

E

J1 +Υ0,1

)

. (5.10)

At that, DAE (3.4) is asymptotically stable as well. Consequently, system (3.1) features the
same property.

It follows from equality (3.9) that (Ed O )R0∆1,2 = Υ0,3. Therefore, condition 2 of Lemma 4
implies that ‖Υ0,3‖ < 1, which entails the inequality

‖ (E +Υ0,3)
−1 ‖ 6

1

1− ‖Υ0,3‖
.

The estimate
∥

∥

∥

∥

∥

(

E O

O − (E +Υ0,3)
−1

)∥

∥

∥

∥

∥

6
1

1− ‖Υ0,3‖
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can be easily obtained with regard for this fact.

In its turn,

‖Θ1‖ 6
‖(Υ0,2 Υ0,4 )‖ ‖colon (En−d, J1 +Υ0,1)‖

1− ‖Υ0,3‖
.

The following theorem results from the aforesaid.

Theorem 3. Let satisfied be all assumptions of Lemma 4 and also

1) in DAE (2.4), (2.5) all characteristic numbers of the matrix J2 have positive real parts,

2)
‖(Υ0,2 Υ0,4 )‖‖colon (En−d, J1+Υ0,1)‖

1−‖Υ0,3‖
< inf

ω
β1 (jωEn−d + J2), where the matrices Υ0,i (i = 1, 4)

obey (3.9), (3.7).

Then, system (3.1) is asymptotically stable.

Assumption 2 of Theorem 3 can be relaxed by replacing it by condition (5.9). It deserves noting
that at verification of this condition one has to calculate the matrix (E +Υ0,3)

−1.

Instead of assumption 2 of Theorem 3, Lemma 6 enables one to verify the inequality

‖(Υ0,2 Υ0,4 )‖ ‖colon (En−d, J1 +Υ0,1)‖
1− ‖Υ0,3‖

< inf
ω

inf
α∈(0,1]

β2(n−d)−1H(ω,α),

where H(ω,α) obeys (4.5), (5.4).

Definition 7. Under the conditions of Lemma 4, by the stability radius of DAE (1.1) is meant
the magnitude

γ∗ = sup
γ

{

γ : Reλi (J2 +Θ1) > 0 ∀i = 1, n− d ∀‖Θ1‖ < γ
}

,

where the matrix Θ1 obeys (5.10).

It is easy to see that the stability radius is determined using (5.5).

By returning to the illustrative example and relying on Theorem 2, we obtain for system (3.17)
the robust stability conditions.

Using (2.5), we determine the matrices J1 =

(

0
0

)

, J2 = (2 ). Obviously, assumption 1 of Theo-

rem 2, as well as of Theorem 3, is satisfied, and infω β1 (jωEn−d + J2) = 2 can be easily calculated.

Using (3.9) and (3.13) and taking into consideration (3.19), determine from the formulas

Υ0,1 =

(

−δ2,1 + 2δ3,1
δ3,1

)

, Υ0,3 =

(

−δ2,2 −δ2,3
0 0

)

, (5.11)

Υ0,2 =
(

δ1,1 − δ2,1 + 4δ3,1
)

, Υ0,4 =
(

δ1,2 − δ2,2 δ1,3 − δ2,3

)

, (5.12)

Ψ1 =

(

−δ2,1 + δ3,1 (4 + δ1,1 − δ2,1 + 4δ3,1)
δ3,1

)

.

Thus, assumption 2 of Theorem 2 assumed the form

‖(Υ0,2 Υ0,4 )‖
√

5 + (−δ2,1 + δ3,1 (4 + δ1,1 − δ2,1 + 4δ3,1))
2 + δ23,1

1− ‖U‖ < 2,

where ‖U‖ is given in (3.20).
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For the example under consideration Θ = ( θ ), where

θ = δ1,1 − δ2,1 + δ3,1(4 + δ2,3 − δ1,3)

+
δ2,2 − δ1,2

1− δ2,2 + δ3,1(δ1,2− δ2,2)

[

− δ2,1+ δ3,1 (4+ δ1,1 − δ2,1+ δ3,1(4− δ1,3 + δ2,3))
]

,

therefore condition (5.3) can be obtained in the explicit form as |θ| < 2.

Obtain condition 2 of Theorem 3. Under the assumptions of Lemma 4, the matrices Υ0,1 and Υ0,2

are the same as in (5.11), (5.12),

Υ0,3 =

(

−δ2,2 + 2δ3,2 −δ2,3 + 2δ3,3
δ3,2 δ3,3

)

,

Υ0,4 =
(

δ1,2 − δ2,2 + 4δ3,2 δ1,3 − δ2,3 + 4δ3,3
)

.

Since

‖colon (En−d, J1 +Υ0,1)‖ =
√

1 + (2δ3,1 − δ2,1)
2 + δ23,1,

condition 2 of Theorem 3 is representable as

‖(Υ0,2 Υ0,4 )‖
√

1 + (2δ3,1 − δ2,1)
2 + δ23,1

1− ‖Υ0,3‖
< 2.

Matrix (5.10) consists of a single element Θ1 = ( θ1 ),

θ1 = δ1,1 − δ2,1 + 4δ3,1 +
1

a

[

(δ1,2 − δ2,2 + 4δ3,2) (δ3,1(2 + δ2,3)− δ2,1(1 + δ3,3))

+ (δ1,3 − δ2,3 + 4δ3,3) (δ3,2δ2,1 + δ3,1(1− δ2,2))
]

,

a = (1 + δ3,3) (δ2,2−1)−δ3,2(δ2,3+2), and therefore one can easily obtain condition (5.9) as |θ1| < 2.

6. CONCLUSIONS

It was shown in the present paper that the DAE perturbations cannot be arbitrary because
introduction into the system of a high index of indefiniteness can completely modify not only its
structure, but also the differential order. Conditions were established under which the indefinite-
nesses do not modify the internal DAE structure. Under the assumptions supporting retention
of the structure, conditions were obtained for robust stability of high implication DAE where the
indefiniteness occurs not only in the matrix for x(t), but also in the matrix at the derivative. The
notion of the stability radii was introduced, and their values were determined. It deserves noting
that the proposed approach to studying the DAE robust stability is not oriented to the strictly
stationary systems. The present authors expect to use it also for analysis of DAE with variable
coefficients.
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APPENDIX

Proof of Lemma 1. Property (2.2) enables one to rearrange DAE (1.1) in

Nz′2(t) + z2(t) = 0, (A.1)

z′1(t) +Gz1(t) = 0 (A.2)

by changing the variables x(t) = S colon (z1(t), z2(t)) and premultiplying by the matrix P .

Obviously, the operator

P1 =
ρ−1
∑

j=0

(−1)jN j

(

d

dt

)j

transforms (A.1) into the equation

z2(t) = 0. (A.3)

By changing variables in system (A.3), (A.2)

colon (z1(t), z2(t)) = S−1x(t),

we get DAE

(

O O

S1 S2

)

x′(t) +

(

S3 S4

GS1 GS2

)

x(t) = 0, (A.4)

where

(

S1 S2

S3 S4

)

= S−1.

The matrix (S3 S4 ) by construction has full rank in rows. Let Q̄ be a permutation matrix such
that

(S3 S4 ) Q̄ =
(

S̃3 S̃4

)

,

where S̃4 is an invertible matrix of the order σ.

By changing the variables x(t) = Q̄ colon (x1(t), x2(t)) and premultiplying by the matrix P1 =
(

S̃−1
4 O

O En−σ

)

, system (A.4) can be driven to the form

(

O O

S̃1 S̃2

)(

x′1(t)
x′2(t)

)

+

(

S̃−1
4 S̃3 Eσ

GS̃1 GS̃2

)(

x1(t)
x2(t)

)

= 0. (A.5)

By applying to (A.5) the operator P2 =

(

E O

O E

)

+

(

O O

−S̃2 O

)

d

dt
, obtain DAE

(

O O

K O

)(

x′1(t)
x′2(t)

)

+

(

S̃−1
4 S̃3 Eσ

GS̃1 GS̃2

)(

x1(t)
x2(t)

)

= 0, (A.6)

where the matrix K = S̃1 − S̃2S̃
−1
4 S̃3 is invertible by construction [6, p. 57].

Finally, by premultiplying (A.6) by the matrix P2 =

(

E O

−K−1GS̃2 K−1

)

, obtain DAE of the

form (2.4), (2.5), where J1 = S̃−1
4 S̃3, J2 = K−1GK.
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The constructed operator transforming DAE (1.1) in the form (2.4), (2.5) is denoted by R. Its
action on a sufficiently smooth n-dimensional vector function ϕ(t) obeys the identity

R [ϕ(t)] = P2P2

[

P1

(

P1 O

O E

)

[Pϕ(t)]

]

, (A.7)

and its order is equal to ρ, which proves existence of operator (2.3).

It is easy to verify that the differential first-order operator

L = P−1





E +N
d

dt
O

O E



P−1
1

((

E O

O E

)

+

(

O O

S̃2 O

)

d

dt

)

P−1
2

= P−1

(

P−1
1 O

O E

)

P−1
1 P−1

2 P−1
2

is inverse to operator (A.7).

Proof of Lemma 2. We demonstrate that for r = ρ there exists a resolving minor in the ma-
trix Dr.

As the result of premultiplying and postmultiplying the matrix Dρ by the respective matrices
diag {P, . . . , P} and diag {S, . . . , S}, obtain with regard for (2.2) that











































O Eσ O N

G O En−σ O

O Eσ O N

G O En−σ O

. . .

O N

En−σ O

O Eσ O N

G O En−σ O











































. (A.8)

Obviously, the rank of the matrix sanding in (A.8) to the right of the double line is equal to the
rank of the matrix Λρ. One can readily demonstrate by means of the block matrix transformations
that rankΛρ = nρ− σ because Nρ = O. There is a resolving minor in matrix (A.8). It includes all
block columns comprising identity matrices. At that, d = σ.

We prove that the matrices Q̄ and Q can be selected so that Q̄ = Q. Consider matrix (A.8),
and postmultiply it by the matrix diag{S−1, . . . , S−1} and premultiply by the invertible matrix

P̄ =

















En P1,1 P1,2 . . . P1,r−1 O

O En P1,1 . . . P1,r−2 P1,r−1
...

...
...

. . .
...

...
O O O . . . En P1,1

O O O . . . O En

















,
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where P1,j =

(

(−1)jN j O

O O

)

, j = 1, r − 1. As the result, we get the matrix

























































S3 S4 O O . . .

GS1 GS2 S1 S2 . . .

S3 S4 O O . . .

GS1 GS2 S1 S2 . . .

S3 S4 . . . (−1)rN r−1S3 (−1)rN r−1S4

GS3 GS4 . . . O O

...
...

...
...

...
...

. . .
...

...
...

...

. . . O O −N2S3 −N2S4

. . . S1 S2 O O

. . . S3 S4 NS3 NS4

. . . GS1 GS2 S1 S2

























































.

The resolving minor in this matrix exists by construction and includes the same columns as the
resolving minor of the matrix Dr. Using invertibility of the matrix S, one can nullify the blocks
including the matrices G and N as multipliers. The resulting matrix is denoted by D̃r. Therefore,
the resolving minor includes the columns from the (n + 1)st to n(r + 1)st, d linearly independent
columns of the last n columns of the matrix D̃r corresponding to the linearly independent columns
of the matrix (S1 S2 ), n− d linearly independent of the first n columns of the matrix D̃r corre-

sponding to the linearly independent columns of the matrix (S3 S4 ). Since

(

S3 S4

GS1 GS2

)

= PB,

the matrices Q̄ and Q can be selected so that Q̄ = Q.

Equivalence of systems (1.1) and (2.4), (2.5) in the sense of solutions is obvious from the existence
of the operators R and L.

Proof of Theorem 1. The need for theorem follows Lemma 1.

We prove sufficiency. Let exist the invertible operator (3.3) rearranging DAE (3.1) in (3.4). It
immediately follows from the results established in [7] that in the stationary case such operator
exists if and only if the matrix Dr̃ has a resolving minor.

Assume the contrary, that is, that the bundle Gc is singular. In this case, there exists an
invertible matrix S̃ such that GcS̃ = c (A1 O ) + (B1 O ), where the zero blocks are of the same
size.

Postmultiply the matrix Dr̃ by the matrix S = diag
{

S̃, . . . , S̃
}

. Obviously, availability of the

resolving minor in the matrix Dr̃ leads to the availability of such minor in the Dr̃S as well.

On the other hand, for any r̃ the matrix Ar̃S̃ has zero columns because generally

Ar̃S̃ =







A1 O

B1 O

O O






,

which contradicts the presence of the resolving minor in the matrixDr̃. Consequently, the bundleGc

must be regular.

Proof of Lemma 3. Under the assumptions made, for DAE (1.1) there exists an operator (2.3). Its
action and replacement of the variables x(t) = Q colon (x1(t), x2(t)) rearranges DAE (3.5) in (3.6).
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According to the assumption 1 of the lemma, system (3.6) is given by

(

Υ1,1 O

En−d +Υ1,2 O

)(

x′1(t)
x′2(t)

)

+

(

J1 +Υ0,1 Ed +Υ0,3

J2 +Υ0,2 Υ0,4

)(

x1(t)
x2(t)

)

= 0, (A.9)

where Υi,j are the matrices from (3.11), (3.9).

Assumption 2 enables invertibility of the matrix En−d +Υ1,2 [9, p. 140]. By premultiplying
system (A.9) by the matrix

(

Ed −Υ1,1 (En−d +Υ1,2)
−1

O (En−d +Υ1,2)
−1

)

,

we get the equation

(

O O

En−d O

)(

x′1(t)

x′2(t)

)

+

(

Ψ1 F

Ψ2 (En−d +Υ1,2)
−1Υ0,4

)(

x1(t)
x2(t)

)

= 0, (A.10)

where Ψ1 and F are defined in (3.13), (3.14), Ψ2 = (En−d +Υ1,2)
−1 (J2 +Υ0,2).

Condition 3 guarantees invertibility of the matrix F (see (3.14)).

Finally, premultiplication of system (A.10) by the matrix

(

F−1 O

− (En−d +Υ1,2)
−1Υ0,4F

−1 E

)

leads to a DAE like (3.4), where the block coefficients G1 and G2 obey (3.12).

Proof of Lemma 4. Assume that in system (3.1)

∆1 = L0∆̂, ∆2 = L1∆̂, (A.11)

where L0 and L1 are the coefficients of the operator (2.6) inverse to the operator (2.3), ∆̂ being
some (n× n) matrix.

According to Remark 1, the coefficients of the operators L and R are related by (2.7). One can
readily see that the equality

∆2 = L1L
−1
0 ∆1

is the necessary and sufficient condition for solvability of the algebraic system (A.11) in ∆̂. With the
use of relations (2.7) it can be put down as the assumption 1 of the lemma. Therefore, condition 1
guarantees the feasibility of representation (A.11).

The identity

∆1x(t) + ∆2x
′(t) = L

[

∆̂x(t)
]

(A.12)

is the direct corollary of (A.11).

By acting on (3.1) with the operator R, we get DAE (3.2) which with regard for (A.12) is put
down as

(

O O

En−d O

)

Q−1x′(t) +

(

J1 Ed

J2 O

)

Q−1x(t) + ∆̂x(t) = 0. (A.13)
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Denote ∆̂Q =

(

∆̂1 ∆̂3

∆̂2 ∆̂4

)

, where ∆̂j (j = 1, 4) are the corresponding blocks. Then, system (A.13)

is representable as
(

O O

En−d O

)(

x′1(t)
x′2(t)

)

+

(

J1 + ∆̂1 Ed + ∆̂3

J2 + ∆̂2 ∆̂4

)(

x1(t)
x2(t)

)

= 0. (A.14)

Since
(

∆̂1 ∆̂3

∆̂2 ∆̂4

)

= L−1
0 ∆1Q = (R0∆1,1 R0∆1,2) (A.15)

(∆1,1 and ∆1,2 are the matrices from (3.7)),

∆̂3 = (Ed O )R0∆1,2.

Therefore, assumption 2 of the lemma implies that ‖∆̂3‖ < 1, whence it follows that the matrix
Ed + ∆̂3 in (A.14) is invertible [9, p. 140].

Premultiply system (A.14) by the matrix






(

Ed + ∆̂3

)−1
O

−∆̂4

(

Ed + ∆̂3

)−1
En−d






,

and obtain a DAE like (3.4), where

G1 =
(

Ed + ∆̂3

)−1 (

J1 + ∆̂1

)

, G2 = J2 + ∆̂2 − ∆̂4

(

Ed + ∆̂3

)−1 (

J1 + ∆̂1

)

.

It follows from (3.9) and (A.15) that ∆̂i = Υ0,i (i = 1, 4). Therefore, the matrices G1 and G2

are representable as (3.16).
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